Objectives: The study aimed to prepare carbamazepine in solid lipid nanoparticle form (CBZ-SLN) in order to enhance its anticonvulsant effect. Method: Eight formulations of CBZ-SLNs were prepared by homogenization and ultra-sonication techniques. Results: The prepared CBZ-SLN showed a high entrapment efficiency% (39.66 ± 2.42%–71.91 ± 1.21%), a small particle size (45.11 ± 6.72–760.7 ± 5.25 nm), and a negative zeta potential (from −21.5 ± 1.02 to −38.4 ± 1.32 mv). The in vitro release study showed the slow release of CBZ from SLNs compared to CBZ aqueous dispersion (p < 0.05). The infrared spectroscopy and the thermal analysis revealed the compatibility of the drug with other ingredients and the presence of drug in the more soluble amorphous estate, respectively. The in vivo study on mice revealed that the CBZ-SLN had a higher anticonvulsant efficacy than CBZ aqueous dispersion after a lethal and chronic dose of pentylenetetrazole (PTZ) (p < 0.05). The histopathological examination of the hippocampus revealed a decrease in the percentage of degeneration in mice treated with the CBZ-SLN compared to the PTZ and CBZ groups. Conclusion: CBZ can be formulated as SLN with higher anticonvulsant activity than free CBZ aqueous dispersion.
Continuous exposure to preservatives such as nitrite salts has deleterious effects on different organs. Meanwhile,
Nigella sativa
oil can remediate such organ dysfunction. Here, we studied the effect of consumption of thymoquinone (TQ); the main component of
Nigella sativa
oil on the brain damage induced by sodium nitrite. Forty adult male rats were daily given oral gavage of sodium nitrite (80 mg/kg) with or without thymoquinone (50 mg/kg). Oxidative stress, cytokines of inflammation, fibrotic elements and apoptotic markers in brain tissue were measured. Exposure to sodium nitrite (SN) resulted in increased levels of malondialdehyde, TGF-β, c-reactive protein, NF-κB, TNF-α, IL-1β and caspase-3 associated with reduced levels of glutathione, cytochrome c oxidase,
Nrf2
and IL-10. However, exposure of rats’ brain tissues to thymoquinone resulted ameliorated all these effects. In conclusion, thymoquinone remediates sodium nitrite-induced brain impairment through several mechanisms including attenuation of oxidative stress, retrieving the reduced concentration of glutathione, blocks elevated levels of pro-inflammatory cytokines, restores cytochrome c oxidase activity, and reducing the apoptosis markers in the brain tissues of rats.
Sitagliptin (SGN) is an antidiabetic drug used for treatment of diabetes mellitus type II. The objectives of this study were to formulate SGN in form of thiolated chitosan (TC) nanoparticles to enhance the mucoadhesion properties of SGN to the gastrointestinal tract, prolong drug release, decrease side effects, and enhance patient compliance. Seventeen batches of SGN-TC nanoparticles were designed by Box-Behnken design and prepared using the ionic gelation method using tripolyphosphate (TPP) as crosslinking agent. The prepared formulations were evaluated for particle size, entrapment efficiency %, and in vitro drug release. Based on the results of optimization, three formulations (F1–F3) were prepared with different drug polymer ratios (1:1, 1:2, and 1:3). The mucoadhesion study and in vivo hypoglycemic activity of three formulations were evaluated in comparison to free SGN in streptozotocin (STZ)-induced diabetic rats. The seventeen SGN-TC nanoparticles showed small particle sizes, high entrapment efficiency, and prolonged drug release. The concentration of TC polymers had highest effect on these responses. The percentage of SGN–TC nanoparticles adhered to tissue was increased and the release was prolonged as the concentration of TC polymer increased (F3 > F2 > F1). The hypoglycemic effect of SGN-TC nanoparticles was significantly higher than resulted by free SGN. It was concluded that TC nanoparticles had the ability to enhance the mucoadhesion properties of SGN and prolong the drug release. SGN-TC nanoparticles significantly reduced plasma glucose levels compared to free SGN in STZ-induced diabetic rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.