Conversational recommender systems focus on the task of suggesting products to users based on the conversation flow. Recently, the use of external knowledge in the form of knowledge graphs has shown to improve the performance in recommendation and dialogue systems. Information from knowledge graphs aids in enriching those systems by providing additional information such as closely related products and textual descriptions of the items. However, knowledge graphs are incomplete since they do not contain all factual information present on the web. Furthermore, when working on a specific domain, knowledge graphs in its entirety contribute towards extraneous information and noise. In this work, we study several subgraph construction methods and compare their performance across the recommendation task. We incorporate pre-trained embeddings from the subgraphs along with positional embeddings in our models. Extensive experiments show that our method has a relative improvement of at least 5.62% compared to the state-of-the-art on multiple metrics on the recommendation task.
Multilingual sentence embeddings capture rich semantic information not only for measuring similarity between texts but also for catering to a broad range of downstream crosslingual NLP tasks. State-of-the-art multilingual sentence embedding models require large parallel corpora to learn efficiently, which confines the scope of these models. In this paper, we propose a novel sentence embedding framework based on an unsupervised loss function for generating effective multilingual sentence embeddings, eliminating the need for parallel corpora. We capture semantic similarity and relatedness between sentences using a multitask loss function for training a dual encoder model mapping different languages onto the same vector space. We demonstrate the efficacy of an unsupervised as well as a weakly supervised variant of our framework on STS, BUCC and Tatoeba benchmark tasks. The proposed unsupervised sentence embedding framework outperforms even supervised stateof-the-art methods for certain under-resourced languages on the Tatoeba dataset and on a monolingual benchmark. Further, we show enhanced zero-shot learning capabilities for more than 30 languages, with the model being trained on only 13 languages. Our model can be extended to a wide range of languages from any language family, as it overcomes the requirement of parallel corpora for training. * * Work started during internship at Huawei Research.
Word senses are the fundamental unit of description in lexicography, yet it is rarely the case that different dictionaries reach any agreement on the number and definition of senses in a language. With the recent rise in natural language processing and other computational approaches there is an increasing demand for quantitatively validated sense catalogues of words, yet no consensus methodology exists. In this paper, we look at four main approaches to making sense distinctions: formal, cognitive, distributional, and intercultural and examine the strengths and weaknesses of each approach. We then consider how these may be combined into a single sound methodology. We illustrate this by examining two English words, “wing” and “fish,” using existing resources for each of these four approaches and illustrate the weaknesses of each. We then look at the impact of such an integrated method and provide some future perspectives on the research that is necessary to reach a principled method for making sense distinctions.
Automatic Language Identification (LI) or Dialect Identification (DI) of short texts of closely related languages or dialects, is one of the primary steps in many natural language processing pipelines. Language identification is considered a solved task in many cases; however, in the case of very closely related languages, or in an unsupervised scenario (where the languages are not known in advance), performance is still poor. In this paper, we propose the Unsupervised Deep Language and Dialect Identification (UDLDI) method, which can simultaneously learn sentence embeddings and cluster assignments from short texts. The UDLDI model understands the sentence constructions of languages by applying attention to character relations which helps to optimize the clustering of languages. We have performed our experiments on three shorttext datasets for different language families, each consisting of closely related languages or dialects, with very minimal training sets. Our experimental evaluations on these datasets have shown significant improvement over state-of-the-art unsupervised methods and our model has outperformed state-of-the-art LI and DI systems in supervised settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.