This study substantiates the chondrogenic role of cartilage chips in osteochondral defects.
Introduction Injuries to articular cartilage have a poor spontaneous repair potential and no gold standard treatment exist. Particulated cartilage, both auto- and allograft, is a promising new treatment method that circumvents the high cost of scaffold- and cell-based treatments. Materials and Methods A comprehensive database search on particulated cartilage was performed. Results Fourteen animal studies have found particulated cartilage to be an effective treatment for cartilage injuries. Many studies suggest that juvenile cartilage has increased regenerative potential compared to adult cartilage. Sixteen clinical studies on 4 different treatment methods have been published. (1) CAIS, particulated autologous cartilage in a scaffold, (2) Denovo NT, juvenile human allograft cartilage embedded in fibrin glue, (3) autologous cartilage chips—with and without concomitant bone grafting, and (4) augmented autologous cartilage chips. Conclusion Implantation of allogeneic and autologous particulated cartilage provides a low cost and effective treatment alternative to microfracture and autologous chondrocyte implantation. The methods are promising, but large randomized controlled studies are needed.
Purpose: To gain knowledge of the repair tissue in critically sized cartilage defects using bone marrow stimulation combined with CARGEL Bioscaffold (CB) compared with bone marrow stimulation (BMS) alone in a validated animal model. Methods: Six adult Göttingen minipigs received two chondral defects in each knee. The knees were randomized to either BMS combined with CB or BMS alone. The animals were euthanized after 6 months. Follow-up consisted of histomorphometry, immunohistochemistry, semiquantitative scoring of the repair tissue (ICRS II), and μCT of the trabecular bone beneath the defect. Results: There was significantly more fibrocartilage (80% vs 64%, p = 0.04) and a trend towards less fibrous tissue (15% vs 30%, p = 0.05) in the defects treated with CB. Hyaline cartilage was only seen in one defect treated with CB and none treated with BMS alone. For histological semiquantitative score (ICRS II), defects treated with CB scored lower on subchondral bone (69 vs. 44, p = 0.04). No significant differences were seen on the other parameters of the ICRS II. Immunohistochemistry revealed a trend towards more positive staining for collagen type II in the CB group (p = 0.08). μCT demonstrated thicker trabeculae (p = 0.029) and a higher bone material density (p = 0.028) in defects treated with CB. Conclusion: Treatment of cartilage injuries with CARGEL Bioscaffold seems to lead to an improved repair tissue and a more pronounced subchondral bone response compared with bone marrow stimulation alone. However, the CARGEL Bioscaffold treatment did not lead to formation of hyaline cartilage.
Background Repair of chondral injuries using cartilage chips has recently demonstrated clinical feasibility. Autologous platelet-rich plasma (PRP) is a potential promising technique for improving healing response during cartilage repair. Purpose To assess the cartilage repair tissue quality after autologous cartilage chips treatment (CC) with and without repeated local injections of PRP for the treatment of full-thickness focal chondral defects of the knee. Materials and Methods Two full-thickness chondral defects (Ø = 6 mm) were created in the medial and lateral trochlea facets of each knee in 6 skeletally mature Göttingen minipigs. The 2 treatment groups were (1) CC with 1 weekly PRP injection for 3 weeks ( n = 12) and (2) CC alone ( n = 12). The animals were euthanized after 6 months. Samples of whole blood and PRP were analyzed for concentrations of platelets and nucleated cells. The composition of the cartilage repair tissue was assessed using gross appearance assessment, histomorphometry, and semiquantitative scoring (ICRS II). Results Histological evaluation demonstrated no significant difference in the content of hyaline cartilage (CC + PRP: 18.7% vs. CC: 19.6%), fibrocartilage (CC + PRP: 48.1% vs. CC: 51.8%), or fibrous tissue (CC + PRP: 22.7% vs. CC: 21.8%) between the treatment groups. Macroscopic evaluation did not demonstrate any difference between groups. Conclusions PRP injections after CC in the treatment of full-thickness cartilage injuries demonstrated no beneficial effects in terms of macroscopic and histologic composition of cartilage repair tissue.
Purpose To evaluate the clinical and biological outcome of combined bone marrow aspirate concentrate (BMAC) and platelet-rich plasma (PRP) on a collagen scaffold for treating cartilage lesions in the knee. Methods and Materials Ten patients (mean age 29.4 years, range 18-36) suffering from large full-thickness cartilage in the knee were treated with BMAC and PRP from January 2015 to December 2016. In a 1-step procedure autologous BMAC and PRP was seeded onto a collagen scaffold and sutured into the debrided defect. Patients were evaluated by clinical outcome scores (IKDC [International Knee Documentation Committee Subjective Knee Form], KOOS [Knee Injury and Osteoarthritis Outcome Score], and pain score using the Numeric Rating Scale [NRS]) preoperatively, after 3 months, and after 1 and 2 years. Second-look arthroscopies were performed ( n = 7) with biopsies of the repair tissue for histology. All patients had magnetic resonance imaging (MRI) preoperatively, after 1 year, and after 2 to 3.5 years with MOCART (magnetic resonance observation of cartilage repair tissue) scores evaluating cartilage repair. Results After 1 year significant improvements were found in IKDC, KOOS symptoms, KOOS ADL (Activities of Daily Living), KOOS QOL (Quality of Life), and pain at activity. At the latest follow-up significant improvements were seen in IKDC, KOOS symptoms, KOOS QOL, pain at rest, and pain at activity. MRI MOCART score for cartilage repair improved significantly from baseline to 1-year follow-up. Histomorphometry of repair tissue demonstrated a mixture of fibrous tissue (58%) and fibrocartilage (40%). Conclusion Treatment of cartilage injuries using combined BMAC and PRP improved subjective clinical outcome scores and pain scores at 1 and 2 years postoperatively. MRI and histology indicated repair tissue inferior to the native hyaline cartilage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.