The cryptic lifestyle of most fungi necessitates molecular identification of the guild in environmental studies.Over the past decades, rapid development and affordability of molecular tools have tremendously improved insights of the fungal diversity in all ecosystems and habitats. Yet, in spite of the progress of molecular methods, knowledge about functional properties of the fungal taxa is vague and interpretation of environmental studies in an ecologically meaningful manner remains challenging. In order to facilitate functional assignments and ecological interpretation of environmental studies we introduce a user friendly traits and character database FungalTraits operating at genus and species hypothesis levels. Combining the information from previous efforts such as FUNGuild and Fun Fun together with involvement of expert knowledge, we reannotated 10210 and 151 fungal and Stramenopila genera, respectively. This resulted in a stand-alone spreadsheet dataset covering 17 lifestyle related traits of fungal and Stramenopila genera, designed for rapid functional assignments of environmental studies. In order to assign the trait states to fungal species hypotheses, the scientific community of experts manually categorised and assigned available trait information to 697413 fungal ITS sequences. On the basis of those sequences we were able to summarise trait and host information into 92623 fungal species hypotheses at 1% dissimilarity threshold.
We assessed total mercury (THg) concentrations and greenhouse gas (GHG) emissions in pristine and managed hemiboreal peatlands in Latvia, aiming to identify environmental factors that potentially affect their variation. The THg concentrations in soil ranged from <1 µg kg−1 to 194.4 µg kg−1. No significant differences between THg concentrations in disturbed and undisturbed peatlands were found, however, the upper soil layer in the disturbed sites had significantly higher THg concentration. During May–August, the mean CO2 emissions (autotrophic and heterotrophic respiration) from the soil ranged from 20.1 ± 5.0 to 104.6 ± 22.7 mg CO2-C m−2 h−1, N2O emissions ranged from −0.97 to 13.4 ± 11.6 µg N2O-N m−2 h−1, but the highest spatial variation was found for mean CH4 emissions—ranging from 30.8 ± 0.7 to 3448.9 ± 1087.8 µg CH4-C m−2 h−1. No significant differences in CO2 and N2O emissions between disturbed and undisturbed peatlands were observed, but CH4 emissions from undisturbed peatlands were significantly higher. Complex impacts of environmental factors on the variation of THg concentrations and GHG emissions were identified, important for peatland management to minimize the adverse effects of changes in the biogeochemical cycle of the biophilic elements of soil organic matter and contaminants, such as Hg.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.