Thermal management technology plays a key role in the continuing miniaturization, performance improvements, and higher reliability of electronic systems. For the past decade, and particularly, the past 4 years, the Defense Advanced Research Projects Agency (DARPA) has aggressively pursued the application of micro-and nano-technology to reduce or remove thermal constraints on the performance of defense electronic systems. The DARPA Thermal Management Technologies (TMT) portfolio is comprised of five technical thrust areas: Thermal Ground Plane (TGP), Microtechnologies for Air-Cooled Exchangers (MACE), NanoThermal Interfaces (NTI), Active Cooling Modules (ACM), and Near Junction Thermal Transport (NJTT). An overview of the TMT program will be presented with emphasis on the goals and status of these efforts relative to the current State-of-the-Art. The presentation will close with future challenges and opportunities in the thermal management of defense electronics.
True nanotechnology, defined as the ability to reliably and repeatably fabricate nanostructures with controlled differences in size, shape, and orientation at precise substrate locations, currently does not exist. There are many examples demonstrating the capability to grow, deposit, and manipulate nanometer-sized features, but typically these techniques do not allow for controllable manufacturing of individual structures. To bridge this gap and to unlock the true potential of nanotechnology for defense sensing applications, the Defense Advanced Research Projects Agency (DARPA) launched the Tip-Based Nanofabrication (TBN) research program with the intent of achieving controlled manufacturing of nanostructures using functionalized AFM cantilevers and tips. This work describes the background, goals, and recent advances achieved during the multi-year TBN program.
In order to unlock the true potential of nanotechnology, the development of controlled nanomanufacturing techniques for individual structures is critical. While the capability to grow, deposit, and manipulate nanostructures currently exists, the ability to reliably fabricate these devices with controlled differences in size, shape, and orientation at various substrate positions does not exist. To bridge this gap, the Defense Advanced Research Projects Agency (DARPA) launched the Tip-Based Nanofabrication (TBN) research program with the intent of achieving controlled nanomanufacturing of nanowires, nanotubes and quantum dots using functionalized AFM cantilevers and tips. This work describes the background, goals, and current approaches being explored during the multi-year TBN program.
A polymer based biochip for rapid 2D separations of peptides, proteins, and other biomedically relevant molecules was designed and fabricated. Like traditional 2D polyacrylamide gel electrophoresis (2D-PAGE) methods, the device will allow molecules to separate based on isoelectric point (pI) and molecular weight (MW). Our design, however, integrates both an initial capillary isoelectric focusing (cIEF) step followed by capillary electrophoresis (CE) in multiple parallel channels, all on a single microfluidic chip. Not only is the "lab-on-a-chip" design easier to use and less expensive, but the miniaturization of the device produces very rapid separations. Compared to traditional 2D-PAGE, which can take hours to complete, we estimate separation times on the order of seconds. Fluorescence detection will be used in the preliminary stages of testing, but the device also is equipped with integrated electrodes in the electrophoresis channels to perform multiplexed electrochemical detection for quantitative analysis. We will present preliminary results of the chip development and testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.