The history of the Arctic Ocean during the Cenozoic era (0-65 million years ago) is largely unknown from direct evidence. Here we present a Cenozoic palaeoceanographic record constructed from >400 m of sediment core from a recent drilling expedition to the Lomonosov ridge in the Arctic Ocean. Our record shows a palaeoenvironmental transition from a warm 'greenhouse' world, during the late Palaeocene and early Eocene epochs, to a colder 'icehouse' world influenced by sea ice and icebergs from the middle Eocene epoch to the present. For the most recent ∼14 Myr, we find sedimentation rates of 1-2 cm per thousand years, in stark contrast to the substantially lower rates proposed in earlier studies; this record of the Neogene reveals cooling of the Arctic that was synchronous with the expansion of Greenland ice (∼3.2 Myr ago) and East Antarctic ice (∼14 Myr ago). We find evidence for the first occurrence of ice-rafted debris in the middle Eocene epoch (∼45 Myr ago), some 35 Myr earlier than previously thought; fresh surface waters were present at ∼49 Myr ago, before the onset of ice-rafted debris. Also, the temperatures of surface waters during the Palaeocene/Eocene thermal maximum (∼55 Myr ago) appear to have been substantially warmer than previously estimated. The revised timing of the earliest Arctic cooling events coincides with those from Antarctica, supporting arguments for bipolar symmetry in climate change. © 2006 Nature Publishing Group
Oceanic sediments from long cores drilled on the Lomonosov ridge, in the central Arctic, contain ice-rafted debris (IRD) back to the middle Eocene epoch, prompting recent suggestions that ice appeared in the Arctic about 46 million years (Myr) ago. However, because IRD can be transported by icebergs (derived from land-based ice) and also by sea ice, IRD records are restricted to providing a history of general ice-rafting only. It is critical to differentiate sea ice from glacial (land-based) ice as climate feedback mechanisms vary and global impacts differ between these systems: sea ice directly affects ocean-atmosphere exchanges, whereas land-based ice affects sea level and consequently ocean acidity. An earlier report assumed that sea ice was prevalent in the middle Eocene Arctic on the basis of IRD, and although somewhat preliminary supportive evidence exists, these data are neither comprehensive nor quantified. Here we show the presence of middle Eocene Arctic sea ice from an extraordinary abundance of a group of sea-ice-dependent fossil diatoms (Synedropsis spp.). Analysis of quartz grain textural characteristics further supports sea ice as the dominant transporter of IRD at this time. Together with new information on cosmopolitan diatoms and existing IRD records, our data strongly suggest a two-phase establishment of sea ice: initial episodic formation in marginal shelf areas approximately 47.5 Myr ago, followed approximately 0.5 Myr later by the onset of seasonally paced sea-ice formation in offshore areas of the central Arctic. Our data establish a 2-Myr record of sea ice, documenting the transition from a warm, ice-free environment to one dominated by winter sea ice at the start of the middle Eocene climatic cooling phase.
[1] The Cenozoic ice-rafted debris (IRD) history of the central Arctic is reconstructed utilizing the terrigenous coarse sand fraction in IODP 302 cores from 0 to 273 meters composite depth. This HoloceneÀmiddle Eocene quantitative record of terrigenous sand accumulation on the Lomonosov Ridge, along with qualitative information on grain texture and composition, confirms the interpretation that ice initiation (sea ice and glacial ice) occurred $46 Ma in the Arctic, and provides a long-term pattern of Arctic ice expansion and decay since the middle Eocene. IRD mass accumulation rates range from 0 to 0.13 g/cm 2 /ka in the middle Eocene and from 0 to 0.36 g/cm 2 /ka in the Neogene. IRD mass accumulation rate (MAR) maxima in the Miocene and Pliocene cooccur with either glacial initiation or intensification in the sub-Arctic. The 46.25 Ma IRD onset in the central Arctic slightly precedes the earliest evidence of ice in the Antarctic, and compares in timing with a >1000 ppm decrease in atmospheric concentrations of CO 2 . The decline of pCO 2 in the middle Eocene may have driven both poles across the temperature threshold that enabled the nucleation of glaciers on land and partial freezing of the surface Arctic Ocean, especially during times of low insolation.
[1] Continuous X-ray fluorescence scanning of middle Eocene ($46 Ma) core M0002A-55X ($236-241 m composite depth), recovered during Integrated Ocean Drilling Program Expedition 302, revealed a strong cyclical signal in some major and trace geochemical elements. We performed a multiproxy study of the same core, which included organic geochemical, sedimentological, and biological parameters, and integrated our results with available geochemical and physical properties data. The target was to look for cyclicity in the several proxies, investigate their frequency, and understand the environmental response to the potential forcing. Results indicate that a higher terrigenous component corresponds to lower organic carbon concentration, smaller contributions by angiosperm pollen and spores, organic-walled dinoflagellate cysts, and chrysophyte cysts (lower productivity, shorter growing season for flowering plants, and lower stratification) but higher contributions by bisaccate pollen and diatoms (drier conditions on land, more marine conditions) and higher terrigenous sand (ice-rafted debris (IRD)). Our investigation shows that physical proxy parameters hold cyclicity with periods of about 50 and 100 cm and that these frequency components are compatible with a Milankovitchtype orbital forcing, representing precession and obliquity, respectively. The longer 100 cm cyclicity is also present in the biological (pollen, dinoflagellate cysts, and siliceous microfossils) and in the sedimentological (IRD) proxies. The environmental signal derived from the integrated multiproxy analysis suggests that in an enclosed Arctic Ocean at time of ice (sea ice and glacial ice) initiation the biological proxies responded more strongly to growing season length/darkness, whereas the terrigenous components, directly driven by sea ice and/ or glacial ice formation and extent, responded more directly to seasonal insolation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.