Recently commercialized powered prosthetic arm systems hold great potential in restoring function for people with upper-limb loss. However, effective use of such devices remains limited by conventional (direct) control methods, which rely on electromyographic signals produced from a limited set of muscles. Targeted Muscle Reinnervation (TMR) is a nerve transfer procedure that creates additional recording sites for myoelectric prosthesis control. The effects of TMR may be enhanced when paired with pattern recognition technology. We sought to compare pattern recognition and direct control in eight transhumeral amputees who had TMR in a balanced randomized cross-over study. Subjects performed a 6–8 week home trial using direct and pattern recognition control with a custom prostheses made from commercially available parts. Subjects showed statistically better performance in the Southampton Hand Assessment Procedure (p = 0.04) and the Clothespin relocation task (p = 0.02). Notably, these tests required movements along 3 degrees of freedom. Seven of 8 subjects preferred pattern recognition control over direct control. This study was the first home trial large enough to establish clinical and statistical significance in comparing pattern recognition with direct control. Results demonstrate that pattern recognition is a viable option and has functional advantages over direct control.
With existing conventional prosthesis control (direct control), individuals with a transradial amputation use two opposing muscle groups to control each prosthesis motor. As component complexity increases, subjects must switch the prosthesis into different modes to control each component in sequence. Pattern recognition control offers the ability to control multiple movements in a seamless manner without switching. In this paper, three individuals with a transradial amputation completed a home trial to compare direct control and pattern recognition control of a multiple degree-of-freedom prosthesis. Outcome measures before and after the home trial, together with subject questionnaires, were used to evaluate functional control. Although small, this trial has implications for the implementation of pattern recognition in commercial control systems and for future research studies.
BackgroundAdvances such as targeted muscle reinnervation and pattern recognition control may provide improved control of upper limb myoelectric prostheses, but evaluating user function remains challenging. Virtual environments are cost-effective and immersive tools that are increasingly used to provide practice and evaluate prosthesis control, but the relationship between virtual and physical outcomes—i.e., whether practice in a virtual environment translates to improved physical performance—is not understood.MethodsNine people with transhumeral amputations who previously had targeted muscle reinnervation surgery were fitted with a myoelectric prosthesis comprising a commercially available elbow, wrist, terminal device, and pattern recognition control system. Virtual and physical outcome measures were obtained before and after a 6-week home trial of the prosthesis.ResultsAfter the home trial, subjects showed statistically significant improvements (p < 0.05) in offline classification error, the virtual Target Achievement Control test, and the physical Southampton Hand Assessment Procedure and Box and Blocks Test. A trend toward improvement was also observed in the physical Clothespin Relocation task and Jebsen-Taylor test; however, these changes were not statistically significant. The median completion time in the virtual test correlated strongly and significantly with the Southampton Hand Assessment Procedure (p = 0.05, R = − 0.86), Box and Blocks Test (p = 0.007, R = − 0.82), Jebsen-Taylor Test (p = 0.003, R = 0.87), and the Assessment of Capacity for Myoelectric Control (p = 0.005,R = − 0.85). The classification error performance only had a significant correlation with the Clothespin Relocation Test (p = 0.018, R = .76).ConclusionsIn-home practice with a pattern recognition-controlled prosthesis improves functional control, as measured by both virtual and physical outcome measures. However, virtual measures need to be validated and standardized to ensure reliability in a clinical or research setting.Trial registrationThis is a registered clinical trial: NCT03097978.
Abstract-Body-powered prostheses use a cable-operated system to generate forces and move prosthetic joints. However, this control system can only generate forces in one direction, so current body-powered prehensor designs allow the user either to voluntarily open or voluntarily close the tongs. Both voluntary opening (VO) and voluntary closing (VC) modes of operation have advantages for certain tasks, and many endusers desire a terminal device (TD) that can switch between the two modes. However, such a TD must maintain the same thumb position (i.e., point of Bowden cable attachment) and movement direction in both modes in order to avoid the need to readjust the harness after every mode switch. In this study, we demonstrate a simple design that fulfills these requirements while allowing the user to switch easily between modes. We describe the design concept, describe a rugged split-hook prototype, provide specifications (size, weight, efficiency, etc.), and present a pilot study in which five subjects with intact arms and two subjects with amputation used the VO and VC splithook prehensor to perform the Southampton Hand Assessment Procedure. Subjects performed an average of 4 to 7 (+/-0.2) points better when they could choose to switch between modes on a task-by-task basis than when they were constrained to using only VO or VC modes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.