We investigated geographic patterns of herbivory and resource allocation to defense, growth, and reproduction in an invasive biennial, Alliaria petiolata, to test the hypothesis that escape from herbivory in invasive species permits enhanced growth and lower production of defensive chemicals. We quantified herbivore damage, concentrations of sinigrin, and growth and reproduction inside and outside herbivore exclusion treatments, in field populations in the native and invasive ranges. As predicted, unmanipulated plants in the native range (Hungary, Europe) experienced greater herbivore damage than plants in the introduced range (Massachusetts and Connecticut, USA), providing evidence for enemy release, particularly in the first year of growth. Nevertheless, European populations had consistently larger individuals than US populations (rosettes were, for example, eightfold larger) and also had greater reproductive output, but US plants produced larger seeds at a given plant height. Moreover, flowering plants showed significant differences in concentrations of sinigrin in the invasive versus native range, although the direction of the difference was variable, suggesting the influence of environmental effects. Overall, we observed less herbivory, but not increased growth or decreased defense in the invasive range. Geographical differences in performance and leaf chemistry appear to be due to variation in the environment, which could have masked evolved differences in allocation.
The success of long-term sustainable biofuel production on agricultural lands is still questionable. To this end, we investigated the effects of crop prices on the changes of agricultural land use for biofuel canola production in three wheat crop management zones in North Dakota. The effects of canola hydroprocessed esters and fatty acids (HEFA) production on greenhouse gas (GHG) emissions and energy demand were investigated along with different allocation methods. The Environmental Policy Integrated Climate (EPIC) and Alternative Fuel Transportation Optimization Tool (AFTOT) models were used to simulate the life cycle assessment (LCA) inputs for two key stages of the HEFA pathway: cultivation and transportation. From the EPIC model results, the increase in canola price had a significant impact on predicted farmer decisions to displace food crops with energy crops and particularly on resulting changes in soil carbon (C). The LCA results suggested that to increase soil C sequestration, energy canola should be grown in the place of the fallow whenever possible to guarantee the long-term soil C sustainability of canola HEFA. Other possible ways to mitigate the GHG emissions included using anhydrous ammonia as the nitrogen fertilizer for cultivation and H2 integration (use of HEFA coproducts in H2 production) for HEFA conversion.
The aviation sector seeks to reduce greenhouse gas (GHG) emissions, with manufacturers and airlines announcing “zero-emission” goals and plans. Reduced carbon aviation fuels are central to meeting these goals. However, current and near-term aircraft, which will remain flying for decades, are designed around the combustion of petroleum-based aviation kerosene (e.g., Jet A/A-1). Therefore, the industry has focused on the qualification and approval of synthesized (e.g., non-petroleum-based) aviation fuel components with maximum blend limit percentages to avoid the blended fuel having properties outside the accepted ranges for Jet A/A-1. The synthesized components approved for blending are not necessarily interchangeable with Jet A/A-1. They may lack certain required chemical components, such as aromatics, or may have other characteristics outside the allowable ranges. To ensure safety, these synthesized aviation fuel components are only qualified to be used in commercial aviation when blended up to approved limits. The sector seeks to move toward the capability of using 100% synthesized aviation fuels that also meet sustainability criteria, known as sustainable aviation fuels, or SAF. However, these fuels must be developed, assessed, and deployed appropriately. This paper explores key questions relating to the introduction of 100% SAF, concluding that:• Near-term unblended synthesized aviation fuels must be “drop-in,” meaning they are compatible with existing aircraft and infrastructure.• Stand-alone complete fuels could be qualified within 1–2 years, with blends of blending components to reach 100% synthesized fuels to follow.• Sustainability criteria, while critical to sector acceptance, will continue to be assessed separately from technical performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.