Background: New technologies to improve post-stroke rehabilitation outcomes are of great interest and have a positive impact on functional, motor, and cognitive recovery. Identifying the most effective rehabilitation intervention is a recognized priority for stroke research and provides an opportunity to achieve a more desirable effect. Objective: The objective is to verify the effect of new technologies on motor outcomes of the upper limbs, functional state, and cognitive functions in post-stroke rehabilitation. Methods: Forty two post-stroke patients (8.69 ± 4.27 weeks after stroke onset) were involved in the experimental study during inpatient rehabilitation. Patients were randomly divided into two groups: conventional programs were combined with the Armeo Spring robot-assisted trainer (Armeo group; n = 17) and the Kinect-based system (Kinect group; n = 25). The duration of sessions with the new technological devices was 45 min/day (10 sessions in total). Functional recovery was compared among groups using the Functional Independence Measure (FIM), and upper limbs’ motor function recovery was compared using the Fugl–Meyer Assessment Upper Extremity (FMA-UE), Modified Ashworth Scale (MAS), Hand grip strength (dynamometry), Hand Tapping test (HTT), Box and Block Test (BBT), and kinematic measures (active Range Of Motion (ROM)), while cognitive functions were assessed by the MMSE (Mini-Mental State Examination), ACE-R (Addenbrooke’s Cognitive Examination-Revised), and HAD (Hospital Anxiety and Depression Scale) scores. Results: Functional independence did not show meaningful differences in scores between technologies (p > 0.05), though abilities of self-care were significantly higher after Kinect-based training (p < 0.05). The upper limbs’ kinematics demonstrated higher functional recovery after robot training: decreased muscle tone, improved shoulder and elbow ROMs, hand dexterity, and grip strength (p < 0.05). Besides, virtual reality games involve more arm rotation and performing wider movements. Both new technologies caused an increase in overall global cognitive changes, but visual constructive abilities (attention, memory, visuospatial abilities, and complex commands) were statistically higher after robotic therapy. Furthermore, decreased anxiety level was observed after virtual reality therapy (p < 0.05). Conclusions: Our study displays that even a short-term, two-week training program with new technologies had a positive effect and significantly recovered post-strokes functional level in self-care, upper limb motor ability (dexterity and movements, grip strength, kinematic data), visual constructive abilities (attention, memory, visuospatial abilities, and complex commands) and decreased anxiety level.
The findings show the benefits of robot therapy in two areas of functional recovery. Task-oriented robotic training in rehabilitation setting facilitates recovery not only of the motor function of the paretic arm but also of the cognitive abilities in stroke patients.
In early rehabilitation, Erigo training was safe and effective at improving orthostatic tolerance, posture and positive emotional reactions in both the ST and SCI patients (P< 0.05). In addition, advanced technologies were more effective at boosting the orthostatic tolerance in SCI patients, while they were more effective at increasing the dynamic balance and walking ability in ST patients (P< 0.05).
Background and objectives: One of the greatest challenges facing the healthcare of the aging population is frailty. There is growing scientific evidence that gait assessment using wearable sensors could be used for prefrailty and frailty screening. The purpose of this study was to examine the ability of a wearable sensor-based assessment of gait to discriminate between frailty levels (robust, prefrail, and frail). Materials and methods: 133 participants (≥60 years) were recruited and frailty was assessed using the Fried criteria. Gait was assessed using wireless inertial sensors attached by straps on the thighs, shins, and feet. Between-group differences in frailty were assessed using analysis of variance. Associations between frailty and gait parameters were assessed using multinomial logistic models with frailty as the dependent variable. We used receiver operating characteristic (ROC) curves to calculate the area under the curve (AUC) to estimate the predictive validity of each parameter. The cut-off values were calculated based on the Youden index. Results: Frailty was identified in 37 (28%) participants, prefrailty in 66 (50%), and no Fried criteria were found in 30 (23%) participants. Gait speed, stance phase time, swing phase time, stride time, double support time, and cadence were able to discriminate frailty from robust, and prefrail from robust. Stride time (AUC = 0.915), stance phase (AUC = 0.923), and cadence (AUC = 0.930) were the most sensitive parameters to separate frail or prefrail from robust. Other gait parameters, such as double support, had poor sensitivity. We determined the value of stride time (1.19 s), stance phase time (0.68 s), and cadence (101 steps/min) to identify individuals with prefrailty or frailty with sufficient sensitivity and specificity. Conclusions: The results of our study show that gait analysis using wearable sensors could discriminate between frailty levels. We were able to identify several gait indicators apart from gait speed that distinguish frail or prefrail from robust with sufficient sensitivity and specificity. If improved and adapted for everyday use, gait assessment technologies could contribute to frailty screening and monitoring.
Background: One of the greatest challenges facing the healthcare of the aging population is frailty. There is growing scientific evidence that gait assessment using wearable sensors could be used for prefrailty and frailty screening. The purpose of this study was to examine the ability of a wearable sensor-based assessment of gait to discriminate between frailty levels (robust, prefrail, and frail).Methods: 133 participants (≥ 60 years) were recruited and frailty was assessed using the Fried criteria. Gait was assessed using wireless inertial sensors attached by straps on the thighs, shins, and feet. Between-group differences in frailty were assessed using analysis of variance. Associations between frailty and gait parameters was assessed using multinomial logistic models with frailty as the dependent variable. We used receiver operating characteristic (ROC) curves to calculate the area under the curve (AUC) to estimate the predictive validity of each parameter. The cut-off values were calculated based on the Youden index.Results: Frailty was identified in 37 (28%) participants, prefrailty in 66 (50%), and no Fried criteria were found in 30 (23%) participants. Gait speed, stance phase time, swing phase time, stride time, double support time, and cadence were able to discriminate frailty from robust, and prefrail from robust. Stride time (AUC = 0.915), stance phase (AUC = 0.923), and cadence (AUC = 0.930) were the most sensitive parameters to separate frail or prefrail from robust. Other gait parameters, such as double support, had poor sensitivity. We determined the value of stride time (1.19s), stance phase time (0.68s), and cadence (101 steps/min) to identify individuals with prefrailty or frailty with sufficient sensitivity and specificity.Conclusions: The results of our study show that gait analysis using wearable sensors could discriminate between frailty levels. We were able to identify several gait indicators apart from gait speed that distinguish frail or prefrail from robust with sufficient sensitivity and specificity. If improved and adapted for everyday use, gait assessment technologies could contribute to frailty screening and monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.