TLR are primary triggers of the innate immune system by recognizing various microorganisms through conserved pathogen-associated molecular patterns. TLR2 is the receptor for a functional recognition of bacterial lipopeptides (LP) and is up-regulated during various disorders such as chronic obstructive pulmonary disease and sepsis. This receptor is unique in its ability to form heteromers with TLR1 or TLR6 to mediate intracellular signaling. According to the fatty acid pattern as well as the assembling of the polypeptide tail, LP can signal through TLR2 in a TLR1- or TLR6-dependent manner. There are also di- and triacylated LP, which stimulate TLR1-deficient cells and TLR6-deficient cells. In this study, we investigated whether heterodimerization evolutionarily developed to broaden the ligand spectrum or to induce different immune responses. We analyzed the signal transduction pathways activated through the different TLR2 dimers using the three LP, palmitic acid (Pam)octanoic acid (Oct)(2)C-(VPGVG)(4)VPGKG, fibroblast-stimulating LP-1, and Pam(2)C-SK(4). Dominant-negative forms of signaling molecules, immunoblotting of MAPK, as well as microarray analysis indicate that all dimers use the same signaling cascade, leading to an identical pattern of gene activation. We conclude that heterodimerization of TLR2 with TLR1 or TLR6 evolutionarily developed to expand the ligand spectrum to enable the innate immune system to recognize the numerous, different structures of LP present in various pathogens. Thus, although mycoplasma and Gram-positive and Gram-negative bacteria may activate different TLR2 dimers, the development of different signal pathways in response to different LP does not seem to be of vital significance for the innate defense system.
BackgroundNontypeable Haemophilus influenzae (NTHI) may play a role as an infectious trigger in the pathogenesis of chronic obstructive pulmonary disease (COPD). Few data are available regarding the influence of acute and persistent infection on tissue remodelling and repair factors such as transforming growth factor (TGF)-β.MethodsNTHI infection in lung tissues obtained from COPD patients and controls was studied in vivo and using an in vitro model. Infection experiments were performed with two different clinical isolates. Detection of NTHI was done using in situ hybridization (ISH) in unstimulated and in in vitro infected lung tissue. For characterization of TGF-β signaling molecules a transcriptome array was performed. Expression of the TGF-pseudoreceptor BMP and Activin Membrane-bound Inhibitor (BAMBI) was analyzed using immunohistochemistry (IHC), ISH and PCR. CXC chemokine ligand (CXCL)-8, tumor necrosis factor (TNF)-α and TGF-β expression were evaluated in lung tissue and cell culture using ELISA.ResultsIn 38% of COPD patients infection with NTHI was detected in vivo in contrast to 0% of controls (p < 0.05). Transcriptome arrays showed no significant changes of TGF-β receptors 1 and 2 and Smad-3 expression, whereas a strong expression of BAMBI with upregulation after in vitro infection of COPD lung tissue was demonstrated. BAMBI was expressed ubiquitously on alveolar macrophages (AM) and to a lesser degree on alveolar epithelial cells (AEC). Measurement of cytokine concentrations in lung tissue supernatants revealed a decreased expression of TGF-β (p < 0.05) in combination with a strong proinflammatory response (p < 0.01).ConclusionsWe show for the first time the expression of the TGF pseudoreceptor BAMBI in the human lung, which is upregulated in response to NTHI infection in COPD lung tissue in vivo and in vitro. The combination of NTHI-mediated induction of proinflammatory cytokines and inhibition of TGF-β expression may influence inflammation induced tissue remodeling.
To cite this article: Golebski K, R€ oschmann KIL, Toppila-Salmi S, Hammad H, Lambrecht BN, Renkonen R, Fokkens WJ, van Drunen CM. The multi-faceted role of allergen exposure to the local airway mucosa. Allergy 2013; 68: 152-160.
We conclude that under physiological conditions Phl p 1 affects tracheal epithelial cells through a non-proteolytic activity. Enhancement of TGF-beta expression induced by Phl p 1 together with the increased release of IL-6 and IL-8 might provide an indirect mechanism through which the allergen may cross the epithelial barrier and attracts immunocompetent cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.