The subject matter of this research article is automatic detection of pavement distress on highway roads using computer vision algorithms. Specifically, deep learning convolutional neural network models are employed towards the implementation of the detector. Source data for training the detector come in the form of orthoframes acquired by a mobile mapping system. Compared to our previous work, the orthoframes are generally of better quality, but more importantly, in this work, we introduce a manual preprocessing step: sets of orthoframes are carefully selected for training and manually digitized to ensure adequate performance of the detector. Pretrained convolutional neural networks are then fine-tuned for the problem of pavement distress detection. Corresponding experimental results are provided and analyzed and indicate a successful implementation of the detector.
Abstract-In this paper, we present our findings related to the problem of localization and visualization of a sound source placed in the same room as the listener. The particular effect that we aim to investigate is called synesthesia-the act of experiencing one sense modality as another, e.g., a person may vividly experience flashes of colors when listening to a series of sounds. Towards that end, we apply a series of recently developed methods for detecting sound source in a three-dimensional space around the listener. We also apply a Kalman filter to smooth out the perceived motion. Further, we transform the audio signal into a series of visual shapes, such that the size of each shape is determined by the loudness of the sound source, and its color is determined by the dominant spectral component of the sound. The developed prototype is verified in real time. The prototype configuration is described and some initial experimental results are reported and discussed. Some ideas for further development are also presented.
Real control systems require robust control performance to deal with unpredictable and altering operating conditions of real-world systems. Improvement of disturbance rejection control performance should be considered as one of the essential control objectives in practical control system design tasks. This study presents a multi-loop Model Reference Adaptive Control (MRAC) scheme that leverages a nonlinear autoregressive neural network with external inputs (NARX) model in as the reference model. Authors observed that the performance of multi-loop MRAC-fractional-order proportional integral derivative (FOPID) control with MIT rule largely depends on the capability of the reference model to represent leading closed-loop dynamics of the experimental ML system. As such, the NARX model is used to represent disturbance-free dynamical behavior of PID control loop. It is remarkable that the obtained reference model is independent of the tuning of other control loops in the control system. The multi-loop MRAC-FOPID control structure detects impacts of disturbance incidents on control performance of the closed-loop FOPID control system and adapts the response of the FOPID control system to reduce the negative effects of the additive input disturbance. This multi-loop control structure deploys two specialized control loops: an inner loop, which is the closed-loop FOPID control system for stability and set-point control, and an outer loop, which involves a NARX reference model and an MIT rule to increase the adaptation ability of the system. Thus, the two-loop MRAC structure allows improvement of disturbance rejection performance without deteriorating precise set-point control and stability characteristics of the FOPID control loop. This is an important benefit of this control structure. To demonstrate disturbance rejection performance improvements of the proposed multi-loop MRAC-FOPID control with NARX model, an experimental study is conducted for disturbance rejection control of magnetic levitation test setup in the laboratory. Simulation and experimental results indicate an improvement of disturbance rejection performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.