Ecological "niche modeling" using presence-only locality data and large-scale environmental variables provides a powerful tool for identifying and mapping suitable habitat for species over large spatial extents. We describe a niche modeling approach that identifies a minimum (rather than an optimum) set of basic habitat requirements for a species, based on the assumption that constant environmental relationships in a species' distribution (i.e., variables that maintain a consistent value where the species occurs) are most likely to be associated with limiting factors. Environmental variables that take on a wide range of values where a species occurs are less informative because they do not limit a species' distribution, at least over the range of variation sampled. This approach is operationalized by partitioning Mahalanobis D2 (standardized difference between values of a set of environmental variables for any point and mean values for those same variables calculated from all points at which a species was detected) into independent components. The smallest of these components represents the linear combination of variables with minimum variance; increasingly larger components represent larger variances and are increasingly less limiting. We illustrate this approach using the California Gnatcatcher (Polioptila californica Brewster) and provide SAS code to implement it.
Greater sage-grouse Centrocercus urophasianus (Bonaparte) currently occupy approximately half of their historical distribution across western North America. Sage-grouse are a candidate for endangered species listing due to habitat and population fragmentation coupled with inadequate regulation to control development in critical areas. Conservation planning would benefit from accurate maps delineating required habitats and movement corridors. However, developing a species distribution model that incorporates the diversity of habitats used by sage-grouse across their widespread distribution has statistical and logistical challenges. We first identified the ecological minimums limiting sage-grouse, mapped similarity to the multivariate set of minimums, and delineated connectivity across a 920,000 km2 region. We partitioned a Mahalanobis D2 model of habitat use into k separate additive components each representing independent combinations of species–habitat relationships to identify the ecological minimums required by sage-grouse. We constructed the model from abiotic, land cover, and anthropogenic variables measured at leks (breeding) and surrounding areas within 5 km. We evaluated model partitions using a random subset of leks and historic locations and selected D2 (k = 10) for mapping a habitat similarity index (HSI). Finally, we delineated connectivity by converting the mapped HSI to a resistance surface. Sage-grouse required sagebrush-dominated landscapes containing minimal levels of human land use. Sage-grouse used relatively arid regions characterized by shallow slopes, even terrain, and low amounts of forest, grassland, and agriculture in the surrounding landscape. Most populations were interconnected although several outlying populations were isolated because of distance or lack of habitat corridors for exchange. Land management agencies currently are revising land-use plans and designating critical habitat to conserve sage-grouse and avoid endangered species listing. Our results identifying attributes important for delineating habitats or modeling connectivity will facilitate conservation and management of landscapes important for supporting current and future sage-grouse populations.
Predicting changes in potential habitat for endangered species as a result of global warming requires considering more than future climate conditions; it is also necessary to evaluate biotic associations. Most distribution models predicting species responses to climate change include climate variables and occasionally topographic and edaphic parameters, rarely are biotic interactions included. Here, we incorporate biotic interactions into niche models to predict suitable habitat for species under altered climates. We constructed and evaluated niche models for an endangered butterfly and a threatened bird species, both are habitat specialists restricted to semiarid shrublands of southern California. To incorporate their dependency on shrubs, we first developed climate-based niche models for shrubland vegetation and individual shrub species. We also developed models for the butterfly's larval host plants. Outputs from these models were included in the environmental variable dataset used to create butterfly and bird niche models. For both animal species, abiotic-biotic models outperformed the climate-only model, with climate-only models over-predicting suitable habitat under current climate conditions. We used the climate-only and abiotic-biotic models to calculate amounts of suitable habitat under altered climates and to evaluate species' sensitivities to climate change. We varied temperature ( 1 0.6, 1 1.7, and 1 2.8 1C) and precipitation (50%, 90%, 100%, 110%, and 150%) relative to current climate averages and within ranges predicted by global climate change models. Suitable habitat for each species was reduced at all levels of temperature increase. Both species were sensitive to precipitation changes, particularly increases. Under altered climates, including biotic variables reduced habitat by 68-100% relative to the climate-only model. To design reserve systems conserving sensitive species under global warming, it is important to consider biotic interactions, particularly for habitat specialists and species with strong dependencies on other species.
Achieving long-term persistence of species in urbanized landscapes requires characterizing population genetic structure to understand and manage the effects of anthropogenic disturbance on connectivity. Urbanization over the past century in coastal southern California has caused both precipitous loss of coastal sage scrub habitat and declines in populations of the cactus wren (Campylorhynchus brunneicapillus). Using 22 microsatellite loci, we found that remnant cactus wren aggregations in coastal southern California comprised 20 populations based on strict exact tests for population differentiation, and 12 genetic clusters with hierarchical Bayesian clustering analyses. Genetic structure patterns largely mirrored underlying habitat availability, with cluster and population boundaries coinciding with fragmentation caused primarily by urbanization. Using a habitat model we developed, we detected stronger associations between habitat-based distances and genetic distances than Euclidean geographic distance. Within populations, we detected a positive association between available local habitat and allelic richness and a negative association with relatedness. Isolation-by-distance patterns varied over the study area, which we attribute to temporal differences in anthropogenic landscape development. We also found that genetic bottleneck signals were associated with wildfire frequency. These results indicate that habitat fragmentation and alterations have reduced genetic connectivity and diversity of cactus wren populations in coastal southern California. Management efforts focused on improving connectivity among remaining populations may help to ensure population persistence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.