We have developed a precise and accurate method for the determination of ciprofloxacin and ofloxacin in meat tissues. Our method utilizes capillary electrophoresis with a transient pseudo-isotachophoresis mechanism and liquid–liquid extraction during sample preparation. For our experiment, a meat tissue sample was homogenized in pH 7.00 phosphate buffer at a ratio of 1:10 (tissue mass: buffer volume; g/mL). The extraction of each sample was carried out twice for 15 min with 600 µL of a mixture of dichloromethane and acetonitrile at a 2:1 volume ratio. We then conducted the electrophoretic separation at a voltage of 16 kV and a temperature of 25 °C using a background electrolyte of 0.1 mol/L phosphate–borate (pH 8.40). We used the UV detection at 288 nm. The experimentally determined LOQs for ciprofloxacin and ofloxacin were 0.27 ppm (0.8 nmol/g tissue) and 0.11 ppm (0.3 nmol/g tissue), respectively. The calibration curves exhibited linearity over the tested concentration range of 2 to 10 nmol/g tissue for both analytes. The relative standard deviation of the determination did not exceed 15%, and the recovery was in the range of 85–115%. We used the method to analyze various meat tissues for their ciprofloxacin and ofloxacin contents.
IntroductionDue to the mild-to-moderate iodine deficiency in Poland, in 1997 iodine prophylaxis based on obligatory salt iodization was introduced. We attempted to evaluate the effectiveness of such prophylaxis, based on over 20 years of observations of iodine supply in school-aged children in Opoczno district (Central Poland).Material and methodsA group of 603 children (316 girls and 287 boys), aged 6–14, was examined at 4 time points: in the years 1994, 1999, 2010 and 2016. The children were tested for urine iodine concentration (UIC) and in each child the thyroid volume was measured ultrasonographically.ResultsThe median UIC in 1994 (45.5 μg/l) indicated moderate iodine deficiency, while after introducing prophylaxis it corresponded to adequate values (1999 – 101.1 μg/l, 2010 – 100.6 μg/l, 2016 – 288.3 μg/l); however, the last value was higher than the previous two. The thyroid size, assessed by ultrasonography and presented as volume/body surface area (V/BSA), in 1994 was 6.55 × 10–6 m; this value was higher than at other time points (2.73 × 10–6 m in 1999, 2.73 × 10–6 m in 2010, and 2.70 × 10–6 m in 2016).ConclusionsIodine prophylaxis has proved effective in eliminating iodine deficiency. In recent years, the diversification of iodine sources, despite the reduction of salt consumption, has led to an increase in median UIC to values close to the upper limit of UIC, accepted as normal. Further increase in iodine supply may be unfavourable for health; therefore constant monitoring of iodine prophylaxis is required.
A simple, fast, and accurate capillary zone electrophoresis method has been developed for the determination of ciprofloxacin and ofloxacin. This method uses liquid–liquid extraction. Therefore, it is characterized by a very simple procedure of sample preparation but at the same time satisfactory precision and accuracy. The extraction process of the same urine sample was repeated three times. The extraction protocol was performed each time for 15 min with 1 mL of dichloromethane and chloroform mixture in a 3:1 volume ratio. A 0.1 mol/L phosphate-borate buffer (pH 8.40) was selected as the background electrolyte. UV detection was performed at 288 nm. The separation was carried out at a voltage of 16 kV, at a temperature of 25 °C. Experimentally evaluated LOQ values for ciprofloxacin and ofloxacin were 0.2 nmol/mL urine and 0.05 nmol/mL urine, respectively. For both analytes the calibration curves exhibited linearity over the entire tested concentration range of 1–6 nmol/mL urine. The precision of the method did not exceed 15%, and the recovery was in the range of 85–115%. The developed and validated procedure was applied to analyze human urine for the content of ciprofloxacin and ofloxacin.
Two cheap, simple and reproducible methods for the electrophoretic determination of homocysteine thiolactone (HTL) in human urine have been developed and validated. The first method utilizes off-line single drop microextraction (SDME), whereas the second one uses off-line SDME in combination with field amplified sample injection (FASI). The off-line SDME protocol consists of the following steps: urine dilution with 0.2 mol/L, pH 8.2 phosphate buffer (1:2, v/v), chloroform addition, drop formation and extraction of HTL. The pre-concentration of HTL inside a separation capillary was performed by FASI. For sample separation, the 0.1 mol/L pH 4.75 phosphate buffer served as the background electrolyte, and HTL was detected at 240 nm. A standard fused-silica capillary (effective length 55.5 cm, 75 μm id) and a separation voltage of 21 kV (~99 μA) were used. Electrophoretic separation was completed within 7 min, whereas the LOD and LOQ for HTL were 0.04 and 0.1 μmol/L urine, respectively. The calibration curve in urine was linear in the range of 0.1–0.5 μmol/L, with R2 = 0.9991. The relative standard deviation of the points of the calibration curve varied from 2.4% to 14.9%. The intra- and inter-day precision and recovery were 6.4–10.2% (average 6.0% and 6.7%) and 94.9–102.7% (average 99.7% and 99.5%), respectively. The analytical procedure was successfully applied to the analysis of spiked urine samples obtained from apparently healthy volunteers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.