This study presents a new power converter for switched reluctance motor-based drives. In comparison with the standard power systems, the proposed one allows reduction of the switching losses, especially in a low-speed range, as well as eliminates energy intake from source during the energy discharge process. As a result the efficiency of drive can be increased in the entire range of rotational speed. The computer model of the drive and a detailed study on relationships between the output power and the rotational speed for a sample two-phase motor-based drive are presented. To verify simulations results the measurements on the laboratory test-stand are carried out.
This article presents a method to adjust the elements of a small wind power plant to the wind speed characterized by the highest annual level of energy. Tests were carried out on the basis of annual wind distributions at three locations. The standard range of wind speeds was reduced to that resulting from the annual wind speed distributions in these locations. The construction of the generators and the method of their excitation were adapted to the characteristics of the turbines. The results obtained for the designed power plants were compared with those obtained for a power plant with a commercial turbine adapted to a wind speed of 10 mps. The generator structure and control method were optimized using a genetic algorithm in the MATLAB program (Mathworks, Natick, MA, USA); magnetostatic calculations were carried out using the FEMM program; the simulations were conducted using a proprietary simulation program. The simulation results were verified by measurement for a switched reluctance machine of the same voltage, power, and design. Finally, the yields of the designed generators in various locations were determined.
This paper presents a proposal for a new type of regulator for switched reluctance motor (SRM) drives. The proposed regulator enables a significant extension of the rotational speed range and drive output power. This regulator is characterized by a complex structure, including two regulation modules: voltage and phase supply switch-on angle. The voltage module includes a proportional integral derivative (PID) voltage regulator. During its operation, the value of the phase supply switch-on angle and the width of the phase supply range are determined as a result of interpolation of the data previously determined in the simulation program. The other module contains the PID controller of the phase supply switch-on angle. The values of the angles included in the tables have been determined so as to ensure that the drive works with the greatest possible efficiency. The control method is determined based on the current operating parameters of the drive, i.e., torque and speed. The operation of the regulator was simulated in the MATLAB Simulink program. The regulator presented here was implemented in a field programmable gate array (FPGA). Tests of the regulator’s operation in the prototype system were carried out in the field of control of commutation angles.
This article presents the possibilities of newly developed middleware dedicated for distributed and modular control systems. The software enables the exchange of information locally, within one control module, and globally, between many modules. The executed information exchange system speed tests confirmed the correct operation of the software. The middleware was used in the control system of the active upper-limb exoskeleton. The upper-limb rehabilitation exoskeleton structure with six degrees of mechanical freedom is presented. The tests were performed using the prototype with three joints. The drives’ models of individual joints were developed and simulated. As a result, the courses of the motion trajectory were shown for different kinds of pressure on the force sensors, and different methods of signal filtering. The tests confirmed a correct operation of middleware and drives control system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.