This study aims to quantify changes in discharge in the rivers of the Kulekhani watershed due to climate change and examine its future impact on power generation from the Kulekhani Hydropower project. The future climate conditions of the watershed are predicted by downscaling the outputs of A2 and B2 scenarios of the HadCM3 global circulation model for three time periods:
Highlights i) Numerical simulation of actual evapotranspiration (ET) from natural/montane ecosystems ii) Stone hydraulic properties reveal contribution to soil water availability iii) Effect of soil stone content on actual evapotranspiration was quantified
A contaminated industrial waste site in Washington State (USA) containing buried, metallic-waste storage tanks, pipes, and wells, was evaluated to determine the feasibility of monitoring groundwater remediation activities associated with an underlying perched aquifer system using electrical resistivity tomography. The perched aquifer, located ~65 m below ground surface and ~10 m above the regional water table, contains high concentrations of nitrate, uranium, and other contaminants of concern from past tank leaks and intentional releases of wastes to surface disposal sites. The extent of the perched water aquifer is not well known, and the effectiveness of groundwater extraction for contaminant removal is uncertain, so supplemental characterization and monitoring technologies are being evaluated. Numerical simulations of subsurface flow and contaminant transport were performed with a highly resolved model of the hydrogeologic system and waste site infrastructure, and these simulations were used as the physical basis for electrical resistivity tomography modeling. The modeling explicitly accounted for metallic infrastructure at the site. The effectiveness of using surface electrodes versus surface and horizontal subsurface electrodes, for imaging groundwater extraction from the perched water aquifer, was investigated. Although directional drilling is a mature technology, its use for electrode emplacement in the deep subsurface under a complex industrial waste site via horizontal wells has not yet been demonstrated. Results from this study indicate that using horizontal subsurface electrode arrays could significantly improve the ability of electrical resistivity tomography to image deep subsurface features and monitor remediation activities under complex industrial waste sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.