Due to the existing problems and delay of 157nm lithography tool, extension of the ArF (193nm) lithography process with resolution enhancement techniques (RET) should be considered for the 65nm generation lithography and beyond. The mature double-exposure lithography process based on dark-field alternating phase-shift mask (PSM) is one of the promising RET candidates, which is proven to be one of the production-ready strong phase-shifting techniques for current and future IC generations.In this paper, poly gate patterning with the minimum pitch of 160nm has been demonstrated with high numeric aperture (NA) and small partial coherence of ArF lithography along with a dark-field alternating PSM. For poly gate patterning of 65nm generation, optimum illumination settings are found for minimum pitch of 160nm. Through-pitch common process windows for gates with 65nm after-development-inspection (ADI) critical dimension (CD) at minimum pitch of 160nm can be reached larger than 0.30um depth of focus (DOF), which can be used for 65nm node production. Through-pitch proximity can be compensated by optical proximity correction (OPC). Line edge roughness (LER) can be improved a little by this dark-field alternating PSM technique. LER is found of strong aerial image contrast dependency. Shifter width is also chosen as optimum value to obtain the largest process windows and minimize the phase conflicts. 193nm Hi-NA or liquid immersion lithography is suggested to push the alternating PSM resolution limitation.
In our previously published work, we investigated alternating-aperture PSM image intensity imbalance as function of various mask and optical parameters using rigorous electro-magnetic field (EMF) simulations. 1 Results suggested that the imbalance could be effectively compensated through application of an optimized combination of undercut and a constant phase-shifter bias. In the effort of development and implementation of a production-ready image imbalance correction methodology, it is important to validate the accuracy of simulation-based predictions through correlation of results to experimental data. For this purpose, a test reticle containing various mask parameters as variables was designed and manufactured. The experimental data was obtained from SEM measurements of the exposed wafers, and results were compared to rigorous EMF simulation data. Based on results obtained, we propose and validate an image imbalance correction methodology to be implemented within the framework of the PSM -OPC manufacturing flow.
As 6% attenuated phase shift masks (PSM) become commonly used in ArF advanced lithography for the 90nm Technology and mass production to print lines/ spaces as well as contacts, the specification and control of the phase angle and the width of the distribution of phase angles becomes critical to maintain the quality of the lithography process. The influence of the mean phase angle and the width of the distribution of phase angles on the best focus, the through pitch behavior and uniformity of the critical dimension (CD uniformity) has been studied experimentally using a 6% attenuated PSM whose phase angle has been affected by several reticle cleans. The results are consistent with aerial image simulations. Independent specifications for the mean phase angle and the width of the distribution of phase angles have been derived and could be applied for the production of masks in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.