This study shows the significant differences in the fuel quality and ash properties of biochars produced from the slow pyrolysis of various biomass components (leaf, wood, and bark). The objective is to identify which component is likely to cause problems in subsequent utilization processes if biochar produced from various components of mallee trees is used as a fuel. It is found that the pyrolysis of different biomass components produced biochars with distinct characteristics, largely because of the differences in the biological structure of these components. Leaf biochar showed the poorest grindability, possibly because of the presence of abundant tough oil glands in leaf. Even for the biochar prepared from the pyrolysis of leaf at 800 °C, the oil gland enclosures remained largely intact after grinding. Biochars produced from leaf, bark, and wood components also have significant differences in ash properties. Even with low ash content, wood biochars have low Si/K and Ca/K ratios, suggesting that these biochars may have a high slagging propensity, in comparison to bark and leaf biochars. It appears that, in the utilization of biochar prepared from mallee biomass, the grindability is likely to be limited by the leaf fraction while ash-related problems could be due to the wood and bark components.
Biofilm formation on implant materials is responsible for periprosthetic infections. Bacterial attachment is important as the first stage in biofilm formation. It is meaningful to understand the influence of nanostructured surface on bacterial attachment. This review discusses the influence of physicochemical aspects of substratum nanosurface on bacterial attachment.
Titanium and titanium alloys have been extensively studied for many applications in the area of bone tissue engineering. However, dense titanium is prone to lead into aseptic loosening due to their high elastic modulus compared to natural bone. One way to lower the elastic modulus is to produce a porous structure of the metallic alloy by adjusting its porosity. Another concern is the bioinertness of titanium that have no direct chemical bonding with surrounding tissue. One approach to improve the healing process is the application of a calcium phosphate coating onto the surface of biomedical devices and implants. Biomimetic creation of surface using alkali heat treatment with silica addition was employed in this study. The porosity of the samples ranges from 60% to 70%. It was demonstrated that the biomimetic methods are suitable for inducing apatite on the titanium alloys surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.