High-performance artificial synaptic devices are indispensable for developing neuromorphic computing systems with high energy efficiency. However, the reliability and variability issues of existing devices such as nonlinear and asymmetric weight update are the major hurdles in their practical applications for energy-efficient neuromorphic computing. Here, a two-terminal floating-gate memory (2TFGM) based artificial synapse built from all-2D van der Waals materials is reported. The 2TFGM synaptic device exhibits excellent linear and symmetric weight update characteristics with high reliability and tunability. In particular, the high linearity and symmetric synaptic weight realized by simple programming with identical pulses can eliminate the additional latency and power consumption caused by the peripheral circuit design and achieve an ultralow energy consumption for the synapses in the neural network implementation. A large number of states up to ≈3000, high switching speed of 40 ns and low energy consumption of 18 fJ for a single pulse have been demonstrated experimentally. A high classification accuracy up to 97.7% (close to the software baseline of 98%) has been achieved in the Modified National Institute of Standards and Technology (MNIST) simulations based on the experimental data. These results demonstrate the potential of all-2D 2TFGM for high-speed and low-power neuromorphic computing.
Neuromorphic computing is an approach to efficiently solve complicated learning and cognition problems like the human brain using electronics. To efficiently implement the functionality of biological neurons, nanodevices and their implementations in circuits are exploited. Here, we describe a general-purpose spiking neuromorphic system that can solve on-the-fly learning problems, based on magnetic domain wall analog memristors (MAMs) that exhibit many different states with persistence over the lifetime of the device. The research includes micromagnetic and SPICE modeling of the MAM, CMOS neuromorphic analog circuit design of synapses incorporating the MAM, and the design of hybrid CMOS/MAM spiking neuronal networks in which the MAM provides variable synapse strength with persistence. Using this neuronal neuromorphic system, simulations show that the MAM-boosted neuromorphic system can achieve persistence, can demonstrate deterministic fast on-the-fly learning with the potential for reduced circuitry complexity, and can provide increased capabilities over an all-CMOS implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.