Non-equilibrium Green function theory is formulated to meet the three main challenges of high bias quantum device modeling: self-consistent charging, incoherent and inelastic scattering, and band structure. The theory is written in a general localized orbital basis using the example of the zinc blende lattice. A Dyson equation treatment of the open system boundaries results in a tunneling formula with a generalized Fisher-Lee form for the transmission coefficient that treats injection from emitter continuum states and emitter quasi-bound states on an equal footing. Scattering is then included. Self-energies which include the effects of polar optical phonons, acoustic phonons, alloy fluctuations, interface roughness, and ionized dopants are derived. Interface roughness is modeled as a layer of alloy in which the cations of a given type cluster into islands. Two different treatments of scattering; self-consistent Born and multiple sequential scattering are formulated, described, and analyzed for numerical tractability. The relationship between the self-consistent Born and multiple sequential scattering algorithms is described, and the convergence properties of the multiple sequential scattering algorithm are numerically demonstrated by comparing with self-consistent Born calculations.
Layered metal dichalcogenides have attracted significant interest as a family of single- and few-layer materials that show new physics and are of interest for device applications. Here, we report a comprehensive characterization of the properties of tin disulfide (SnS2), an emerging semiconducting metal dichalcogenide, down to the monolayer limit. Using flakes exfoliated from layered bulk crystals, we establish the characteristics of single- and few-layer SnS2 in optical and atomic force microscopy, Raman spectroscopy and transmission electron microscopy. Band structure measurements in conjunction with ab initio calculations and photoluminescence spectroscopy show that SnS2 is an indirect bandgap semiconductor over the entire thickness range from bulk to single-layer. Field effect transport in SnS2 supported by SiO2/Si suggests predominant scattering by centers at the support interface. Ultrathin transistors show on-off current ratios >10(6), as well as carrier mobilities up to 230 cm(2)/(V s), minimal hysteresis, and near-ideal subthreshold swing for devices screened by a high-k (deionized water) top gate. SnS2 transistors are efficient photodetectors but, similar to other metal dichalcogenides, show a relatively slow response to pulsed irradiation, likely due to adsorbate-induced long-lived extrinsic trap states.
The charge-density-wave (CDW) phase is a macroscopic quantum state consisting of a periodic modulation of the electronic charge density accompanied by a periodic distortion of the atomic lattice in quasi-1D or layered 2D metallic crystals. Several layered transition metal dichalcogenides, including 1T-TaSe, 1T-TaS and 1T-TiSe exhibit unusually high transition temperatures to different CDW symmetry-reducing phases. These transitions can be affected by the environmental conditions, film thickness and applied electric bias. However, device applications of these intriguing systems at room temperature or their integration with other 2D materials have not been explored. Here, we demonstrate room-temperature current switching driven by a voltage-controlled phase transition between CDW states in films of 1T-TaS less than 10 nm thick. We exploit the transition between the nearly commensurate and the incommensurate CDW phases, which has a transition temperature of 350 K and gives an abrupt change in current accompanied by hysteresis. An integrated graphene transistor provides a voltage-tunable, matched, low-resistance load enabling precise voltage control of the circuit. The 1T-TaS film is capped with hexagonal boron nitride to provide protection from oxidation. The integration of these three disparate 2D materials in a way that exploits the unique properties of each yields a simple, miniaturized, voltage-controlled oscillator suitable for a variety of practical applications.
As the only non-carbon elemental layered allotrope, few-layer black phosphorus or phosphorene has emerged as a novel two-dimensional (2D) semiconductor with both high bulk mobility and a band gap. Here we report fabrication and transport measurements of phosphorene-hexagonal BN (hBN) heterostructures with one-dimensional (1D) edge contacts. These transistors are stable in ambient conditions for >300 hours, and display ambipolar behavior, a gate-dependent metalinsulator transition, and mobility up to 4000 cm 2 /Vs. At low temperatures, we observe gatetunable Shubnikov de Haas (SdH) magneto-oscillations and Zeeman splitting in magnetic field with an estimated g-factor ~2. The cyclotron mass of few-layer phosphorene holes is determined to increase from 0.25 to 0.31 m e as the Fermi level moves towards the valence band edge. Our results underscore the potential of few-layer phosphorene (FLP) as both a platform for novel 2D physics and an electronic material for semiconductor applications. *
The electronic and thermoelectric properties of one to four monolayers of MoS 2 , MoSe 2 , WS 2 , and WSe 2 are calculated. For few layer thicknesses, the near degeneracies of the conduction band K and Σ valleys and the valence band Γ and K valleys enhance the n-type and p-type thermoelectric performance. The interlayer hybridization and energy level splitting determine how the number of modes within k B T of a valley minimum changes with layer thickness. In all cases, the maximum ZT coincides with the greatest near-degeneracy within k B T of the band edge that results in the sharpest turn-on of the density of modes. The thickness at which this maximum occurs is, in general, not a monolayer. The transition from few layers to bulk is discussed. Effective masses, energy gaps, power-factors, and ZT values are tabulated for all materials and layer thicknesses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.