As part of the effort to sequence the genome of Rattus norvegicus, we constructed a physical map comprised of fingerprinted bacterial artificial chromosome (BAC) clones from the CHORI-230 BAC library. These BAC clones provide ∼13-fold redundant coverage of the genome and have been assembled into 376 fingerprint contigs. A yeast artificial chromosome (YAC) map was also constructed and aligned with the BAC map via fingerprinted BAC and P1 artificial chromosome clones (PACs) sharing interspersed repetitive sequence markers with the YAC-based physical map. We have annotated 95% of the fingerprint map clones in contigs with coordinates on the version 3.1 rat genome sequence assembly, using BAC-end sequences and in silico mapping methods. These coordinates have allowed anchoring 358 of the 376 fingerprint map contigs onto the sequence assembly. Of these, 324 contigs are anchored to rat genome sequences localized to chromosomes, and 34 contigs are anchored to unlocalized portions of the rat sequence assembly. The remaining 18 contigs, containing 54 clones, still require placement. The fingerprint map is a high-resolution integrative data resource that provides genome-ordered associations among BAC, YAC, and PAC clones and the assembled sequence of the rat genome.
In the field of molecular analysis of cancer, there exists a need for a clinical device that can automate protocols for immunohistochemical and in situ hybridization diagnostic staining on tissue microarrays. The Tissue Microarray Antibody Spotter (TMAS) has been developed to provide fundamental improvements over current histological staining techniques by enabling precision application of reagents to individual biopsies within a tissue microarray. This allows for multiplexed reactions on a single slide and promises to significantly reduce costs associated with immunohistochemistry and in situ hybridization based assays. Additionally, because TMAS allows for testing of different biomarkers on each element of a tissue array, a complete cancer profile can be obtained from a single TMA slide. Ultimately this may lead to costeffective, faster and more accurate diagnosis of the patient.
Manual loading of samples into horizontal gels, such as the agarose gels commonly used for DNA fragment sizing and quantification, is laborious and prone to errors. Manual-loading times for highthroughput gels can reach 10 min/gel, and human error can result in incorrect identification of samples because of reverse loading or other errors in the loading process. To reduce gel-loading times and to improve reliability, a novel comb has been developed that uses glass capillaries and hydrostatic pressure to simplify sample loading from microplates. Accurate sample metering is ensured by the uniform length and volume of the capillaries. The loaded comb is placed in the gel boat over a pre-cast agarose gel, and buffer is added to a reservoir at the top of the comb. Once the buffer rises over the ends of the capillaries, the samples are pushed into the wells by hydrostatic pressure. This technique was successfully demonstrated for a 24-lane comb. This capillary comb loader reduces loading time, maintains well-to-well uniformity, and retains the same geometry and appearance of manually loaded bands, making this loading method compatible with existing downstream processes and software for subsequent analysis of the gel image.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.