The photothermal effect of a marine-oriented xanthophyll carotenoid, astaxanthin (AXT), was characterized based on its potential absorption of visible laser light and conversion of optical light energy into heat for thermal treatment. As an antioxidant and anticancer agent, AXT extracted from marine material can be utilized for photothermal therapy due to its strong light absorption. The current study investigated the feasibility of the marine-based material AXT to increase the therapeutic efficacy of chemo-photothermal therapy (PTT) by assessing photothermal sessions in both cells and tumor tissues. A quasi-cw Q-switched 80 W 532 nm laser system was utilized to induce thermal necrosis in in vitro and in vivo models. An in vitro cytotoxicity study of AXT was implemented using squamous cell carcinoma (VX2) and macrophage (246.7) cell lines. In vivo PTT experiments were performed on 17 rabbits bearing VX2 tumors on their eyes that were treated with or without intratumoral injection of AXT at a dose of 100 μl (300 μg/ml) followed by laser irradiation at a low irradiance of 0.11 W/cm2. Fluorescence microscopy images revealed cellular death via apoptosis and necrosis owing to the dual chemo-photothermal effects induced by AXT. In vivo experimental results demonstrated that the AXT-assisted irradiation entailed a temperature increase by 30.4°C after tumor treatment for 4 min. The relative variations in tumor volume confirmed that the tumors treated with both AXT and laser irradiation completely disappeared 14 days after treatment, but the tumors treated under other conditions gradually grew. Due to selective light absorption, AXT-assisted laser treatment could be an effective thermal therapy for various drug-resistant cancers.
BackgroundKorea is considered an iodine sufficient country, and several studies have been conducted regarding iodine status in healthy Korean adults, pregnant women, and preschool children. However, data on iodine status in Korean school-age children are lacking. Therefore, the iodine nutrition status of Korean school-age children was investigated by measuring urine iodine concentration (UIC).MethodsThis cross-sectional study conducted between April and September 2016 comprised 373 school-age children. UIC was determined using a modified microplate method employing ammonium persulfate digestion followed by Sandell-Kolthoff reaction.ResultsThe median UIC was 458.2 µg/L. Excessive iodine intake (>300 µg/L) was found in 286 children (76.7%), with extremely high values exceeding 1,000 µg/L in 19.6% of subjects. Insufficient iodine intake (<100 µg/L) was observed in eight children (2.1%). UIC values were not significantly different between sexes.ConclusionKorean school-age children showed excessive iodine intake. Therefore, education regarding adequate iodine intake in school-age children is needed.
Tuberculosis (TB) patients are normally treated with a combination of antibiotics. However, with improper or incomplete treatment of antibiotics, the disease may progress to multidrug-resistant TB (MDR-TB). The treatment of MDR-TB is very costly and inefficient. Therefore, there is a great demand of new therapeutic approaches for MDR-TB such as photodynamic therapy. In this study, we tried to optimize the conditions for photodynamic inactivation of TB using methylene blue as a photosensitizer. Different combinations of methylene blue concentrations and light doses were tested for their photodynamic effects to A549 cells or Mycobacterium smegmatis (M. smegmatis). We also tested the effect of photodynamic therapy on ciprofloxacin-resistant M. smegmatis. Methylene blue treatment alone did not affect the survival rates of A549 cells or bacteria up to 5 μg/ml. When the A549 and M. smegmatis cells treated with methylene blue were irradiated with laser light (wavelength, 630 nm), photodynamic inactivation of cells was increased in methylene blue concentration-and light dose-dependent manners. Interestingly, the ciprofloxacin-resistant M. smegmatis exhibited higher level of susceptibility to methylene blue-mediated photodynamic inactivation. This study suggests that photodynamic therapy at 3.6 J/cm 2 in the presence of 5 μg/ml methylene blue may be an appropriate range for therapy due to the high bactericidal activity against high level of ciprofloxacin-resistant M. smegmatis and the low damaging effect to mammalian cells. This study demonstrates that photodynamic therapy could be a potential alternative for MDR-TB treatment.
Whole-genome sequencing (WGS) is promising for the quality control of laboratory facilities for Mycobacterium tuberculosis (MTB) strains. We describe the clinical and laboratory characteristics of false positive versus true positive MTB cultures based on WGS, which were experienced in a real clinical setting. Strain harvest and DNA extraction from seven isolates from pre-extensive drug-resistant (pre-XDR) TB patients transferred to the Korea University Ansan Hospital were performed, and epidemiologic links and clinical information, including the phenotypic drug susceptibility test (pDST), were investigated. WGS was performed using Ion GeneStudio with an ION530tm chip (average sequencing depth, ~100-fold). In the phylogenetic tree, identical and different strains were distributed separately. Five of the seven isolates were identical; the remaining two isolates differed from the others. The images of the referred pre-XDR-TB patients with false positive MTB that were analyzed were of regions close to old TB scars. Further, the results of WGS gene mutation analysis for ethambutol, streptomycin, and fluoroquinolone resistance in all six patients were not concordant with the pDST results. WGS and clinical information were useful in differentiating laboratory cross-contamination from true positive TB, thereby avoiding the unnecessary treatment of false positive patients and delay in treating true positive TB patients, with reliable genotypic drug resistance results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.