RNA polymerase II carboxyl-terminal domain (pol II CTD) phosphatases are a newly emerging family of phosphatases that are members of DXDX (T/V). The subfamily includes Small CTD phosphatases, like SCP1, SCP2, SCP3, TIMM50, HSPC129 and UBLCP. Extensive study of SCP1 has elicited the diversified roles of the small C terminal domain phosphatase. The SCP1 plays a vital role in various biological activities, like neuronal gene silencing and preferential Ser5 dephosphorylation, acts as a cardiac hypertrophy inducer with the help of its intronic miRNAs, and has shown a key role in cell cycle regulation. This short review offers an explanation of the mechanism of action of small CTD phosphatases, in different biological activities and metabolic processes. [BMB Reports 2014; 47(4): 192-196]
Granular ZnO nanostructures of single-crystalline wurtzite hexagonal phases were synthesized by a facile and low-cost chemical method in aqueous condition. The average size of ZnO nanograin increased with reflux time, and it significantly affected the open circuit potential(Voc)while the short circuit current density(Jsc)was not changed much. The overall energy conversion efficiency was 1.82% with the smaller grain size ofca.250 nm when it was used as photoelectrode of DSSCs. The positive shifting of the Fermi energy (EF) and low density of surface states (DOS) were consistent with the reduction of the recombination of excited electron with electrolyte for smaller grains.
The effect of TiO 2 nanorods (TNR) and nanoparticles (TNP) composite photoelectrodes and the role of TNR to enhance the energy conversion efficiency in dye-sensitized solar cells (DSSCs) was investigated. The 5% TNR content into the TNP photoelectrode significantly increased the short-circuit current density (J sc ) and the open-circuit potential (V oc ) with the overall energy conversion efficiency enhancement of 13.6% compared to the pure TNP photoelectrode. From the photochemical and impedemetric analysis, the increased J sc and V oc for the 5% TNR/TNP composite photoelectrode was attributed to the scattering effect of TNR, reduced electron diffusion path and the suppression of charge recombination between the composite photoelectrode and electrolyte or dye.
This study was performed to design and to construct a digital soil cone index(CI) measuring device replacing conventional analog type devices. The device developed in the study consisted of a load cell, a rotary encoder and a motor with a decelerator as its main parts. The cone speed was controlled lower than 3.0 m/s which keeps the standard suggested by the ASABE S313.3 specification. The experiment was conducted in a soil bin system as well as in various fields. The CI data measured by the developed device were compared with those by an existing measurement device(SC900, Spectrum, USA). Based on the experiments at various field conditions, the CI measuring characteristic of the device was quite similar to that of the conventional device within a acceptable R 2 range of more than 0.5(mean=0.76). It was concluded that the digital cone index measuring device was an effective and comprehensive sensor for measuring soil strength.
Microglia are the confined immune cells of the central nervous system (CNS). In response to injury or infection, microglia readily become activated and release proinflammatory mediators that are believed to contribute to microglia-mediated neurodegeneration. In the present study, inflammation was induced in the immortalized murine microglial cell line BV-2 by lipopolysaccharide (LPS) treatment. We firstly performed phosphoproteomics analysis and phosphoinositide lipidomics analysis with LPS activated microglia in order to compare phosphorylation patterns in active and inactive microglia and to detect the pattern of changes in phosphoinositide regulation upon activation of microglia. Mass spectrometry analysis of the phosphoproteome of the LPS treatment group compared to that of the untreated control group revealed a notable increase in the diversity of cellular phosphorylation upon LPS treatment. Additionally, a lipidomics analysis detected significant increases in the amounts of phosphoinositide species in the LPS treatment. This investigation could provide an insight for understanding molecular mechanisms underlying microglia-mediated neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.