Background Schizophrenia has been primarily conceptualized as a disorder of high-order cognitive functions with deficits in executive brain regions. Yet due to the increasing reports of early sensory processing deficit, recent models focus more on the developmental effects of impaired sensory process on high-order functions. The present study examined whether this pathological interaction relates to an overarching system-level imbalance, specifically a disruption in macroscale hierarchy affecting integration and segregation of unimodal and transmodal networks. Methods We applied a novel combination of connectome gradient and stepwise connectivity analysis to resting-state fMRI to characterize the sensorimotor-to-transmodal cortical hierarchy organization (96 patients v. 122 controls). Results We demonstrated compression of the cortical hierarchy organization in schizophrenia, with a prominent compression from the sensorimotor region and a less prominent compression from the frontal−parietal region, resulting in a diminished separation between sensory and fronto-parietal cognitive systems. Further analyses suggested reduced differentiation related to atypical functional connectome transition from unimodal to transmodal brain areas. Specifically, we found hypo-connectivity within unimodal regions and hyper-connectivity between unimodal regions and fronto-parietal and ventral attention regions along the classical sensation-to-cognition continuum (voxel-level corrected, p < 0.05). Conclusions The compression of cortical hierarchy organization represents a novel and integrative system-level substrate underlying the pathological interaction of early sensory and cognitive function in schizophrenia. This abnormal cortical hierarchy organization suggests cascading impairments from the disruption of the somatosensory−motor system and inefficient integration of bottom-up sensory information with attentional demands and executive control processes partially account for high-level cognitive deficits characteristic of schizophrenia.
Modern approaches to investigate complex brain dynamics suggest to represent the brain as a functional network of brain regions defined by a brain atlas, while edges represent the structural or functional connectivity among them. This approach is also utilized for mathematical modeling of the resting-state brain dynamics, where the applied brain parcellation plays an essential role in deriving the model network and governing the modeling results. There is however no consensus and empirical evidence on how a given brain atlas affects the model outcome, and the choice of parcellation is still rather arbitrary. Accordingly, we explore the impact of brain parcellation on inter-subject and inter-parcellation variability of model fitting to empirical data. Our objective is to provide a comprehensive empirical evidence of potential influences of parcellation choice on resting-state whole-brain dynamical modeling. We show that brain atlases strongly influence the quality of model validation and propose several variables calculated from empirical data to account for the observed variability. A few classes of such data variables can be distinguished depending on their inter-subject and inter-parcellation explanatory power.
Although the relationship between resting-state functional connectivity and task-related activity has been addressed, the relationship between task and resting-state directed or effective connectivity - and its behavioral concomitants - remains elusive. We evaluated effective connectivity under an N-back working memory task in 24 participants using stochastic dynamic causal modelling (DCM) of 7 T fMRI data. We repeated the analysis using resting-state data, from the same subjects, to model connectivity among the same brain regions engaged by the N-back task. This allowed us to: (i) examine the relationship between intrinsic (task-independent) effective connectivity during resting (A) and task states (A), (ii) cluster phenotypes of task-related changes in effective connectivity (B) across participants, (iii) identify edges (B) showing high inter-individual effective connectivity differences and (iv) associate reaction times with the similarity between B and A in these edges. We found a strong correlation between A and A over subjects but a marked difference between B and A. We further observed a strong clustering of individuals in terms of B, which was not apparent in A. The task-related effective connectivity B varied highly in the edges from the parietal to the frontal lobes across individuals, so the three groups were clustered mainly by the effective connectivity within these networks. The similarity between B and A at the edges from the parietal to the frontal lobes was positively correlated with 2-back reaction times. This result implies that a greater change in context-sensitive coupling - from resting-state connectivity - is associated with faster reaction times. In summary, task-dependent connectivity endows resting-state connectivity with a context sensitivity, which predicts the speed of information processing during the N-back task.
Dynamical modeling of the resting-state brain dynamics essentially relies on the empirical neuroimaging data utilized for the model derivation and validation. There is however still no standardized data processing for magnetic resonance imaging pipelines and the structural and functional connectomes involved in the models. In this study, we thus address how the parameters of diffusion-weighted data processing for structural connectivity (SC) can influence the validation results of the whole-brain mathematical models and search for the optimal parameter settings. On this way, we simulate the functional connectivity by systems of coupled oscillators, where the underlying network is constructed from the empirical SC and evaluate the performance of the models for varying parameters of data processing. For this, we introduce a set of simulation conditions including the varying number of total streamlines of the whole-brain tractography (WBT) used for extraction of SC, cortical parcellations based on functional and anatomical brain properties and distinct model fitting modalities. We observed that the graph-theoretical network properties of structural connectome can be affected by varying tractography density and strongly relate to the model performance. We explored free parameters of the considered models and found the optimal parameter configurations, where the model dynamics closely replicates the empirical data. We also found that the optimal number of the total streamlines of WBT can vary for different brain atlases. Consequently, we suggest a way how to improve the model performance based on the network properties and the optimal parameter configurations from multiple WBT conditions. Furthermore, the population of subjects can be stratified into subgroups with divergent behaviors induced by the varying number of WBT streamlines such that different recommendations can be made with respect to the data processing for individual subjects and brain parcellations.Author summaryThe human brain connectome at macro level provides an anatomical constitution of inter-regional connections through the white matter in the brain. Understanding the brain dynamics grounded on the structural architecture is one of the most studied and important topics actively debated in the neuroimaging research. However, the ground truth for the adequate processing and reconstruction of the human brain connectome in vivo is absent, which is crucial for evaluation of the results of the data-driven as well as model-based approaches to brain investigation. In this study we thus evaluate the effect of the whole-brain tractography density on the structural brain architecture by varying the number of total axonal fiber streamlines. The obtained results are validated throughout the dynamical modeling of the resting-state brain dynamics. We found that the tractography density may strongly affect the graph-theoretical network properties of the structural connectome. The obtained results also show that a dense whole-brain tractography is not always the best condition for the modeling, which depends on a selected brain parcellation used for the calculation of the structural connectivity and derivation of the model network. Our findings provide suggestions for the optimal data processing for neuroimaging research and brain modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.