QCD-like theories can be engineered to remain in a confined phase when compactified on an arbitrarily small circle, where their features may be studied quantitatively in a controlled fashion. Previous work has elucidated the generation of a non-perturbative mass gap and the spontaneous breaking of chiral symmetry in this regime. Here, we study the rich spectrum of hadronic states, including glueball, meson, and baryon resonances. We find an exponentially growing Hagedorn density of states, as well as the emergence of non-perturbative energy scales given by iterated exponentials of the inverse Yang-Mills coupling g 2 .arXiv:1707.08971v1 [hep-th]
We propose a model for CP violating oscillations of neutral, heavy-flavored baryons into antibaryons at rates which are within a few orders of magnitude of their lifetimes. The flavor structure of the baryon violation suppresses neutron oscillations and baryon number violating nuclear decays to experimentally allowed rates. We also propose a scenario for producing such baryons in the early Universe via the out-of-equilibrium decays of a neutral particle, after hadronization but before nucleosynthesis. We find parameters where CP violating baryon oscillations at a temperature of a few MeV could result in the observed asymmetry between baryons and antibaryons. Furthermore, part of the relevant parameter space for baryogenesis is potentially testable at Belle II via decays of heavy flavor baryons into an exotic neutral fermion. The model introduces four new particles: three light Majorana fermions and a colored scalar. The lightest of these fermions is typically long lived on collider timescales and may be produced in decays of bottom and possibly charmed hadrons.
Abstract:We establish the action of three-dimensional bosonization and particle-vortex duality in the presence of a boundary, which supports a non-anomalous two-dimensional theory. We confirm our prescription using a microscopic realization of the duality in terms of a Euclidean lattice.
We use 3d bosonization dualities to derive new non-supersymmetric dualities between bosonic quiver theories in 2 + 1 dimensions. It is shown that such dualities are a natural non-Abelian generalization of the bosonic particle-vortex duality. A special case of such dualities is applicable to Chern-Simons theories living on interfaces in 3 + 1 dimensional SU (N ) Yang-Mills theory across which the theta angle jumps. We also analyze such interfaces in a holographic construction which provides further evidence for novel dualities between quiver gauge theories and gauge theories with adjoint scalars. These conjectured dualities pass some stringent consistency tests. arXiv:1807.01321v2 [hep-th]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.