Snow aggregates evolve into a variety of observed shapes and densities. Despite this diversity, models and observational studies employ fractal or Euclidean geometric measures that are assumed universal for all aggregates. This work therefore seeks to improve understanding and representation of snow aggregate geometry and its evolution by characterizing distributions of both observed and Monte Carlo–generated aggregates. Two separate datasets of best-fit ellipsoid estimates derived from Multi-Angle Snowflake Camera (MASC) observations suggest the use of a bivariate beta distribution model for capturing aggregate shapes. Product moments of this model capture shape effects to within 4% of observations. This mathematical model is used along with Monte Carlo simulated aggregates to study how combinations of monomer properties affect aggregate shape evolution. Plate aggregates of any aspect ratio produce a consistent ellipsoid shape evolution whereas thin column aggregates evolve to become more spherical. Thin column aggregates yield fractal dimensions much less than the often-assumed value of 2.0. Ellipsoid densities and fractal analogs of density (lacunarity) are much more variable depending on combinations of monomer size and shape. Simple mathematical scaling relationships can explain the persistent triaxial ellipsoid shapes that appear in both observed and modeled aggregates. Overall, both simulations and observations prove aggregates are rarely oblate. Therefore, the use of the proposed bivariate ellipsoid distribution in models will allow for similar-sized aggregates to exhibit a realistic dispersion of masses and fall speeds.
Abstract. Ground-based measurements of frozen precipitation are heavily influenced by interactions of surface winds with gauge-shield geometry. The Multi-Angle Snowflake Camera (MASC), which photographs hydrometeors in free-fall from three different angles while simultaneously measuring their fall speed, has been used in the field at multiple midlatitude and polar locations both with and without wind shielding. Here, we present an analysis of Arctic field observations – with and without a Belfort double Alter shield – and compare the results to computational fluid dynamics (CFD) simulations of the airflow and corresponding particle trajectories around the unshielded MASC. MASC-measured fall speeds compare well with Ka-band Atmospheric Radiation Measurement (ARM) Zenith Radar (KAZR) mean Doppler velocities only when winds are light (≤5ms-1) and the MASC is shielded. MASC-measured fall speeds that do not match KAZR-measured velocities tend to fall below a threshold value that increases approximately linearly with wind speed but is generally <0.5ms-1. For those events with wind speeds ≤1.5ms-1, hydrometeors fall with an orientation angle mode of 12∘ from the horizontal plane, and large, low-density aggregates are as much as 5 times more likely to be observed. Simulations in the absence of a wind shield show a separation of flow at the upstream side of the instrument, with an upward velocity component just above the aperture, which decreases the mean particle fall speed by 55 % (74 %) for a wind speed of 5 m s−1 (10 m s−1). We conclude that accurate MASC observations of the microphysical, orientation, and fall speed characteristics of snow particles require shielding by a double wind fence and restriction of analysis to events where winds are light (≤5ms-1). Hydrometeors do not generally fall in still air, so adjustments to these properties' distributions within natural turbulence remain to be determined.
Abstract. Ground-based measurements of frozen precipitation are heavily influenced by interactions of surface winds with gauge-shield geometry. The Multi-Angle Snowflake Camera (MASC), which photographs hydrometeors in free-fall from three different angles while simultaneously measuring their fall speed, has been used in the field at multiple mid-latitude and polar locations both with and without wind shielding. Here we show results of computational fluid dynamics (CFD) simulations of the airflow and corresponding particle trajectories around the unshielded MASC and compare these results to Arctic field observations with and without a Belfort double Alter shield. Simulations in the absence of a wind shield show a separation of flow at the upstream side of the instrument, with an upward velocity component just above the aperture, which decreases the mean particle fall speed by 55 % (74 %) for a wind speed of 5 m s−1 (10 m s−1). MASC-measured fall speeds compare well with Ka-band Atmospheric Radiation Measurement (ARM) Zenith Radar (KAZR) mean Doppler velocities only when winds are light (< 5 m s−1) and the MASC is shielded. MASC-measured fall speeds that do not match KAZR measured velocities tend to fall below a threshold value that increases approximately linearly with wind speed but is generally
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.