Sphingosine-1-phosphate (S1P) plays an important role in trafficking leukocytes and developing immune disorders including autoimmunity. In the synovium of rheumatoid arthritis (RA) patients, increased expression of S1P was reported, and the interaction between S1P and S1P receptor 1 (S1P1) has been suggested to regulate the expression of inflammatory genes and the proliferation of synovial cells. In this study, we investigated the level of S1P1 mRNA expression in the blood leukocytes of RA patients. In contrast to the previous reports, the expression level of this gene was not correlated to their clinical scores, disease durations and ages. However, S1P1 was transcribed at a significantly lower level in the circulating leukocytes of RA patients when compared to age-, and sex-matched healthy controls. Since these data may suggest the participation of S1P1, further studies are needed to determine the role of this receptor in the pathogenesis of RA.
Single-walled carbon nanotubes (SWCNTs) are potent nanomaterials that have diverse shapes and features. The utilization of these molecules for drug delivery is being investigated; thus, it is important to determine whether they alter immune responses against pathogens. In this study, we show that macrophages treated with a mixture of lipopolysaccharide and SWCNTs produced normal levels of nitric oxide and inducible nitric oxide synthase mRNA. However, these treatments induced cell death, presumably via necrosis. In addition, treating cells with SWCNTs induced the expression of tumor necrosis factor-α mRNA, a potent pro-inflammatory cytokine. These results suggest that SWCNTs may influence immune responses, which could result in unexpected effects following their administration for the purpose of drug delivery.
is an epithelial-derived cytokine that plays an important role in immune-mediated diseases such as asthma, atopic dermatitis, and rheumatoid arthritis. Although IL-33 is considered a potential target for the treatment of allergy-related diseases, no small molecule that inhibits IL-33 has been reported. Based on the structureactivity relationship and in vitro 2D NMR studies employing 15 N-labeled IL-33, we identified that the oxazolo[4,5-c]-quinolinone analog 7 c binds to the interface region of IL-33 and IL-33 receptor (ST2), an orphan receptor of the IL-1 receptor family. Compound 7 c effectively inhibited the production of IL-6 in human mast cells in a dose-dependent manner. Compound 7 c is the first low molecular weight IL-33 inhibitor and may be used as a prototype molecule for structural optimization and investigation of the IL-33/ST2 signaling pathway.
Memory T (T M ) cells play an important role in the long-term defense against pathogen reinvasion. However, it is still unclear how these cells receive the crucial signals necessary for their longevity and homeostatic turnover. To understand how T M cells receive these signals, we infected mice with lymphocytic choriomeningitis virus (LCMV) and examined the expression sites of neural cadherin (N-cadherin) by immunofluorescence microscopy. We found that N-cadherin was expressed in the surroundings of the white pulps of the spleen and medulla of lymph nodes (LNs). Moreover, T M cells expressing high levels of killer cell lectin-like receptor G1 (KLRG1), a ligand of N-cadherin, were co-localized with N-cadherin + cells in the spleen but not in LNs. We then blocked N-cadherin in vivo to investigate whether it regulates the formation or function of T M cells. The numbers of CD127 hi CD62L hi T M cells in the spleen of memory P14 chimeric mice declined when N-cadherin was blocked during the contraction phase, without functional impairment of these cells. In addition, when CD127 lo KLRG1 hi T M cells were adoptively transferred into anti-N-cadherin-treated mice compared with control mice, the number of these cells was reduced in the bone marrow and LNs, with out functional loss. Taken together, our results suggest that N-cadherin participates in the development of CD127 hi CD62L hi T M cells and homing of CD127 lo KLRG1 hi T M cells to lymphoid organs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.