Techniques for fabricating nanospaced electrodes suitable for studying electron tunneling through metal-molecule-metal junctions are described. In one approach, top contacts are deposited/placed on a self-assembled monolayer or Langmuir-Blodgett film resting on a conducting substrate, the bottom contact. The molecular component serves as a permanent spacer that controls and limits the electrode separations. The top contact can be a thermally deposited metal film, liquid mercury drop, scanning probe tip, metallic wire or particle. Introduction of the top contact can greatly affect the electrical conductance of the intervening molecular film by chemical reaction, exerting pressure, or simply migrating through the organic layer. Alternatively, vacant nanogaps can be fabricated and the molecular component subsequently inserted. Strategies for constructing vacant nanogaps include mechanical break junction, electromigration, shadow mask lithography, focused ion beam deposition, chemical and electrochemical plating techniques, electron-beam lithography, and molecular and atomic rulers. The size of the nanogaps must be small enough to allow the molecule to connect both leads and large enough to keep the molecules in a relaxed and undistorted state. A significant advantage of using vacant nanogaps in the construction of metal-molecule-metal devices is that the junction can be characterized with and without the molecule in place. Any electrical artifacts introduced by the electrode fabrication process are more easily deconvoluted from the intrinsic properties of the molecule.
We report on GeTe-based, phase-change RF switches in a series configuration with an embedded micro heater for thermal switching. With heater parasitics reduced, these GeTe RF switches show on-state resistance of 0.12 ohm*mm and off-state capacitance of 0.12 pF/mm. The RF switch figure-of-merit is estimated to be 11 THz, which is about 15 times better than state-of-the-art silicon-on insulator switches. With 50-J.lm-wide GeTe switches, RF insertion loss was 0.25 dB and isolation was 24 dB at 20 GHz.Harmonic powers were suppressed >90 dBc at 35 dBm, meeting wireless requirements. The GeTe switches were characterized under W-CDMA signals without spectral regrowth up to 25 dBm.
We report the effect of compressive hydrostatic pressure on the current-voltage characteristics of AlGaN/ GaN heterojunction field effect transistors ͑HFETs͒ on a sapphire substrate. The drain current increases with hydrostatic pressure and the maximum relative increase occurs when the gate bias is near threshold and drain bias is slightly larger than saturation bias. The increase of the drain current is associated with a pressure induced shift of the threshold voltage by −8.0 mV/ kbar that is attributed to an increase of the polarization charge density at the AlGaN/ GaN interface due to the piezoelectric effect. The results demonstrate the considerable potential of AlGaN/ GaN HFETs for strain sensor applications.
The current-voltage characteristics of n-GaN / u-AlGaN / n-GaN heterostructure devices are investigated for potential pressure sensor applications. Model calculations suggest that the current decreases with pressure as a result of the piezoelectric effect, and this effect becomes more significant with thicker AlGaN layers and increasing AlN composition. The change in current with pressure is shown to be highly sensitive to the change in interfacial polarization charge densities. The concept is verified by measuring the current versus voltage characteristics of an n-GaN / u-Al 0.2 Ga 0.8 N/n-GaN device under hydrostatic pressure over the range of 0-5 kbars. The measured current is found to decrease approximately linearly with applied pressure in agreement with the model results. A gauge factor, which is defined as the relative change in current divided by the in-plane strain, approaching 500 is extracted from the data, demonstrating the considerable potential of these devices for pressure sensing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.