We demonstrate a flexible, transparent, and conductive composite electrode comprising silver nanowires (Ag NWs), and indium-doped zinc oxide (IZO) layers. IZO is sputtered onto an Ag NW layer, with the unique structural features of the resulting composite suitable as a flexible, transparent, conductive electrode. The IZO buffer layer prohibits surface oxidation of the Ag NW, and is thereby effective in preventing undesirable changes in electrical properties. The newly designed composite electrode is a promising alternative to conventional ITO films for the production of flexible and transparent electrodes to be applied in next-generation flexible electronic devices.
In this study, organic light‐emitting diodes (OLEDs) with enhanced optical properties are fabricated by inserting a nanosized stripe auxiliary electrode layer (nSAEL) between the substrate and an indium tin oxide (ITO) layer. This design can avoid the shortcomings of conventional microsized layers while maintaining high optical uniformity due to the improved conductivity of the electrode. The primary advantage is that the nSAEL (submicrometer scale) is no longer visible to the naked eye. Moreover, the reflective shuttered (grating) structure of the nSAEL increases the forward‐directed light by the microcavity (MC) effect and minimizes the loss of light by the extracting the surface plasmon polariton (SPP) mode. In this study, the degree of the MC and SPP can be controlled with the parameters of the nSAEL by simply conjugating the conditions of laser interference lithography (LIL). Therefore, the current and power efficiencies of the device with an nSAEL with optimized parameters are 1.17 and 1.23 times higher than the reference device at 1000 cd/m2, respectively, and at these parameters, the overall sheet resistance is reduced to less than half (48%). All of the processes are verified by comparing the computational simulation results and the experimental results obtained with the actual fabricated device.
Improved out-coupling efficiency and low haze of organic light-emitting diode (OLED) lighting with an auxiliary electrode are demonstrated by selective microlens arrays (SMLAs). The microlens arrays, aligned with the auxiliary electrode, were selectively fabricated, since the fully packed microlens arrays lead to OLED lighting with high haze. The external quantum efficiency and power efficiency of the devices with the SMLAs increased by 32% when compared with the devices without these arrays. Using the SMLAs, dark grid lines in the emission region became brighter, with a low haze, and the spectra of the emitted light had no shift.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.