The survival of Mycobacterium avium subsp. paratuberculosis was studied by culture of fecal material sampled at intervals for up to 117 weeks from soil and grass in pasture plots and boxes. Survival for up to 55 weeks was observed in a dry fully shaded environment, with much shorter survival times in unshaded locations. Moisture and application of lime to soil did not affect survival. UV radiation was an unlikely factor, but infrared wavelengths leading to diurnal temperature flux may be the significant detrimental component that is correlated with lack of shade. The organism survived for up to 24 weeks on grass that germinated through infected fecal material applied to the soil surface in completely shaded boxes and for up to 9 weeks on grass in 70% shade. The observed patterns of recovery in three of four experiments and changes in viable counts were indicative of dormancy, a hitherto unreported property of this taxon. A dps-like genetic element and relA, which are involved in dormancy responses in other mycobacteria, are present in the M. avium subsp. paratuberculosis genome sequence, providing indirect evidence for the existence of physiological mechanisms enabling dormancy. However, survival of M. avium subsp. paratuberculosis in the environment is finite, consistent with its taxonomic description as an obligate parasite of animals.
In a previous longitudinal study, Mycobacterium avium subsp. paratuberculosis survived for 55 weeks in fecal material in the shade, but for much shorter periods in exposed locations. In this experiment, the survival of the organism was studied in 250 liters of dam water and sediment in large water troughs that were placed in either a semiexposed location or in a shaded location and compared to survival in fecal material and soil in the shaded location. Survival in water and/or sediment in the shade was for up to 48 weeks compared to 36 weeks in the semiexposed location. Survival in sediment was 12 to 26 weeks longer than survival in the water column. Survival in soil and fecal material in the terrestrial environment in the shaded location was only 12 weeks. Although disturbance to sediment could not be ruled out as a factor, there was evidence of dormancy in both the water column and the sediment, since the organism could not be recovered for several months before again becoming detectable. The results suggest that water may be a significant reservoir of M. avium subsp. paratuberculosis infection. Further research on the biology of the organism in aquatic environments is warranted. Animal health authorities will need to provide appropriate advice to farmers to minimize exposure of livestock to potentially infected water sources. Survival of the organism in water destined for human consumption will need to be addressed if the organism is found to be involved in the etiology of Crohn's disease.
Type IV fimbriae are essential virulence factors of Dichelobacter nodosus, the principal causative agent of ovine foot rot. The fimA fimbrial subunit gene is required for virulence, but fimA mutants exhibit several phenotypic changes and it is not certain if the effects on virulence result from the loss of type IV fimbriamediated twitching motility, cell adherence, or reduced protease secretion. We showed that mutation of either the pilT or pilU gene eliminated the ability to carry out twitching motility. However, the pilT mutants displayed decreased adhesion to epithelial cells and reduced protease secretion, whereas the pilU mutants had wild-type levels of extracellular protease secretion and adherence. These data provided evidence that PilT is required for the type IV fimbria-dependent protease secretion pathway in D. nodosus. It was postulated that sufficient fimbrial retraction must occur in the pilU mutants to allow protease secretion, but not twitching motility, to take place. Although no cell movement was detected in a pilU mutant of D. nodosus, aberrant motion was detected in an equivalent mutant of Pseudomonas aeruginosa. These observations explain how in D. nodosus protease secretion can occur in a pilU mutant but not in a pilT mutant. In addition, virulence studies with sheep showed that both the pilT and pilU mutants were avirulent, providing evidence that mutation of the type IV fimbrial system affects virulence by eliminating twitching motility, not by altering cell adherence or protease secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.