In a prototypical ferromagnet (Ga,mn)As based on a III-V semiconductor, substitution of divalent mn atoms into trivalent Ga sites leads to severely limited chemical solubility and metastable specimens available only as thin films. The doping of hole carriers via (Ga,mn) substitution also prohibits electron doping. To overcome these difficulties, masek et al. theoretically proposed systems based on a I-II-V semiconductor LiZnAs, where isovalent (Zn,mn) substitution is decoupled from carrier doping with excess/deficient Li concentrations. Here we show successful synthesis of Li 1 + y (Zn 1 − x mn x )As in bulk materials. Ferromagnetism with a critical temperature of up to 50 K is observed in nominally Li-excess (y = 0.05-0.2) compounds with mn concentrations of x = 0.02-0.15, which have p-type metallic carriers. This is presumably due to excess Li in substitutional Zn sites. semiconducting LiZnAs, ferromagnetic Li(Zn,mn)As, antiferromagnetic LimnAs, and superconducting LiFeAs systems share square lattice As layers, which may enable development of novel junction devices in the future.
High-pressure in situ angular dispersive x-ray diffraction study on the wurtzite-type InN nanowires has been carried out by means of the image-plate technique and diamond-anvil cell (DAC) up to about 31.8 GPa. The pressure-induced structural transition from the wurtzite to a rocksalt-type phase occurs at about 14.6 GPa, which is slightly higher than the transition pressure of InN bulk materials ($12.1 GPa). The relative volume reduction at the transition point is close to 17.88%, and the bulk modulus B 0 is determined through fitting the relative volume-pressure experimental data related to the wurtzite and rocksalt phases to the Birch-Murnaghan equation of states. Moreover, high-pressure Raman scattering for InN nanowires were also investigated in DAC at room temperature. The corresponding structural transition was confirmed by assignment of phonon modes. We calculated the mode Grüneisen parameters for the wurtzite and rocksalt phases of InN nanowires.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.