The objective of this study was to investigate some mechanical and physical properties of three-layer particleboards with the core layer made from various willow (Salix viminalis) and industrial pine wood particle mixtures. Increasing willow content slightly worsened the modulus of elasticity and modulus of rupture but improved internal bond, screw holding, water absorption, and thickness swelling. The effects of resin content in the core layer and the density of particleboards were also studied. Mechanical properties, especially modulus of elasticity and internal bond, of particleboards with willow particles met the requirements of EN 312 standard for boards of type P2. The willow (Salix viminalis) can be considered as a substitute for pine wood for the manufacturing of the core layer of three-layer particleboards.
In this study, wood plastic composites (WPC) made of poly(lactic acid) PLA and a bark-filler were manufactured. Two degrees of bark comminution (10–35 mesh and over 35 mesh) and varied content of bark (40, 50 and 60%) were investigated. The studied panels were compared with analogically manufactured HDPE boards. The manufacture of composites involved two stages: at first, WPC granules with the appropriate formulation were produced using the extruder (temperatures in individual extruder sections were 170–180 °C) and crushing using a hammer mill after cooling the extruded composite; secondly, the obtained granulate was used to produce boards with nominal dimensions of 300 × 300 × 2.5 mm3 by flat pressing in a mold, using a single daylight press at a temperature 200 °C. The study proved that comminuted bark can be applied as a filler in PLA composites. However, an increase in bark content decreased mechanical properties (MOR, MOE) and deteriorated humidity resistance (high TS and WA) of the panels. Along with the increase in bark content, an increase in the contact angle of the composite surfaces and a decrease in the total surface energy were noted. It was also found that PLA composites have higher strength parameters and lower moisture resistance compared to HDPE composites with the same bark content. Graphical abstract
The objective of this study was to investigate some mechanical and physical properties of one-layer particleboards made from various willow (Salix viminalis) and industrial pine wood particle mixtures bonded with urea formaldehyde resin. Modulus of elasticity and modulus of rupture decreased, whereas internal bond and screw holding strengths increased with increasing willow particle content. The decrease in bending properties was rather small; these properties of particleboards containing 50 % willow particles were on average smaller by about 10 % than particleboards containing only industrial wood particles. Increasing the willow particle content resulted in improved water absorption and thickness swelling. The willow Salix viminalis can be considered as a substitute for pine wood for manufacturing of particleboards. Eigenschaften einschichtiger Versuchsspanplatten aus Weidenspänen (Salix viminalis) und industriellen Holzspänen Zusammenfassung Ziel dieser Studie war es, einige mechanische und physikalische Eigenschaften einschichtiger Spanplatten zu untersuchen, die aus verschiedenen Mischungen von Weidenspänen (Salix viminalis) und industriellen Kiefernholzspänen hergestellt und mit Harnstoffharz verklebt wurden. Der Elastizitätsmodul und die Biegefestigkeit nahmen mit zunehmendem Anteil an Weidenspänen ab, wohingegen die Querzugfestigkeit und der Schraubenausziehwiderstand zunahmen. Die Abnahme der Biegeeigenschaften war relativ gering; bei Spanplatten mit 50 % Weidenspäneanteil waren diese Eigenschaften um durchschnittlich 10 % geringer als bei Spanplatten aus ausschließlich industriellen Holzspänen. Eine Erhöhung des Weidenspäneanteils führte zu einer geringeren Wasseraufnahme und Dickenquellung. Salix viminalis kann als Ersatz für Kiefernholz zur Herstellung von Spanplatten in Betracht gezogen werden.
This paper presents the results of research on selected mechanical and physical properties of polyethylene membranes containing 50% of the plant fraction obtained as waste from an edible oil press. The produced biomembranes were characterized by low tensile strength (2.02–4.28 MPa). The addition of plant material will not adversely affect the barrier properties such as water vapor permeability or the contact angle. Additionally, there was a discoloration of the characteristics affecting the shrinkage of the membrane. The presence of the plant component clearly lowered the shrinkage of the material. This research is important and provides valuable knowledge on the possibilities of using plant waste and the direction of the potential application of the materials produced with their use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.