Plant genetic resources are conserved by genebanks mainly in the form of seeds. In most of the cases, the dried seeds can be stored for a considerable period of time, but eventually seed deterioration results in the inability to generate healthy seedlings. Prolonging seed longevity during storage reduces the frequency of regeneration, which is beneficial from a genetic as well as a management point of view. To reduce the rate of deterioration, cool and dry storage conditions are usually practised for long-term seed storage. In spite of the growing body of evidence that seed deterioration is predominantly caused by oxidative processes, the importance of seed storage under anoxic conditions has received little attention from the genebank community. Herein, we report on the effects of anoxia on seed viability, the oxygen uptake by dry seeds in closed containers and the permeability for oxygen of various seed storage containers. Our results confirm that the ageing of dry seeds is accelerated by the presence of oxygen in the storage environment. Therefore, we recommend that genebanks store dry seeds under anoxic conditions to prolong their longevity during ex situ conservation. To reduce the initial rate of viability loss, we further recommend that the period of temporary storage after seed harvest be minimized and also that the seeds are kept during this period under controlled conditions, including anoxia.
Spinach (Spinacia oleracea L.) is a highly nutritious leafy vegetable and an economically important food crop. The wild species S. turkestanica Iljin and S. tetrandra Steven ex M. Bieb. are inter-fertile with cultivated spinach and constitute important sources of novel characters to improve spinach varieties, such as for their resistance to pests and diseases. Despite their relevance in plant breeding, S. turkestanica and S. tetrandra are poorly represented in genetic resources collections. Among the reasons for these collection gaps are the difficulties in propagating these species ex situ. Here we report on the results of collecting expeditions for S. turkestanica in Central Asia and for S. tetrandra in the Trans-Caucasus, which were organized by the Dutch gene bank in collaboration with several breeding companies. Furthermore, we also present efficient protocols for the ex situ regeneration of these species. These protocols were used to successfully regenerate 66 S. turkestanica and 36 S. tetrandra samples from the collecting
In this study, higher BMI and higher body fat percentage were significantly associated with lower serum 25(OH)D levels in older persons. This association was particularly present in individuals with overweight, and higher fat percentages, suggesting that these persons are at increased risk of vitamin D insufficiency.
Collecting expeditions are of prime importance to acquire genetically unique material, as for many crops and their wild relatives, large gaps are present in collections worldwide. This is also true for the three species of the Allium ampeloprasum complex, native to Greece, which are considered as the crop wild relatives of cultivated leek ( ). Therefore, a collecting expedition was carried out in Greece in 2009. A total of 62 populations of A. ampeloprasum, 20 populations of A. , 19 populations of A. and three mixed species populations were sampled. The sampled populations were mostly small (less than 50 plants), but sometimes large populations (more than 10,000 plants) were encountered, especially for A. . Two different reproduction systems were observed in A. ampeloprasum, which is probably due to level differences. The sexual type was predominantly found along cultivated fields, whereas the asexual type occurred in abandoned fields together with (L). and Cistus . Regeneration protocols were developed for these species as the of cultivated leek is different from its wild relatives. Regenerating A. ampeloprasum was more difficult compared to the other two species. Ten years after the collecting mission only one-third of the collected material has been regenerated. This is partly due to the characteristics of the material and partly because the Dutch collectors and the Greek competent national authorities on Access and Benefit Sharing were not able to conclude a specific arrangement which also involved the commercial use of the material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.