The structural, microwave absorption, and oxidation characteristics of diesel particulate matter (DPM) collected from a CAT 3304 diesel engine are reported. The x-ray diffraction of DPM yields the characteristic peaks of pregraphitic carbons (cokes and pitches), and its modeling yields d(002) ≍ 3.429 Å and a crystallite size of about 20 Å. The real and imaginary parts of the dielectric constant ∊ = ∊′ + i∊″ are measured at 8.7 GHz using the cavity perturbation technique. The measured values for the DPM are ∊′ = 8.6 ± 1.7 and ∊″ = 7.4 ± 1.5, compared to ∊′ ≍ 1.0 and ∊″ ≍ 6 × 10−5 for the ceramic trap material used for collecting DPM. The oxidation products of the DPM, analyzed by FTIR spectroscopy, are found to contain CO2 and CO with a peak yield occurring around 500 °C. Since microwave power absorption is proportional to ∊″, these results show that selective microwave heating of the DPM in the ceramic traps should be a very efficient process with CO2 and CO as the main oxidation products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.