The design of a high-speed IC random number source macro-cell, suitable to be integrated in a Smart Card microcontroller, is presented. The oscillator sampling technique is exploited and a jittered oscillator which features an amplified thermal noise source has been designed in order to increase the output throughput and the statistical quality of the generated bit sequences. The oscillator feedback loop acts as an offset compensation for the noise amplifier, thus solving one of the major issues in this kind of circuit. A numerical model for the proposed system has been developed which allows us to carry out an analytical expression for the transition probability between successive bits in the output stream. A prototype chip has been fabricated in a standard digital 0:18"m n-well CMOS process which features a 10Mbps throughput and fulfills the NIST FIPS and correlation-based tests for randomness. The macro-cell area, excluding pads, is 0:0016mm 2 (184"m  86"m) and a 2:3mW power consumption has been measured.
Software counter measures against side channel attacks considerably hinder performance of cryptographic algorithms in terms of memory or execution time or both. The challenge is to achieve secure implementation with as little extra cost as possible. In this paper we optimize a counter measure for the AES block cipher consisting in transforming a boolean mask to a multiplicative mask prior to a non-linear Byte Substitution operation (thus, avoiding S-box re-computations for every run or storing multiple S-box tables in RAM), while preserving a boolean mask everywhere else. We demonstrate that it is possible to achieve such transformation for a cost of two additional multiplications in the field. However, due to an inherent vulnerability of multiplicative masking to so-called zero attack, an additional care must be taken to securize its implementation. We describe one possible, although not perfect, approach to such an implementation which combines algebraic techniques and partial re-computation of S-boxes. This adds one more multiplication operation, and either occasional S-box re-computations or extra 528 bytes of memory to the total price of the counter measure.
The design of a high speed IC random number source macro-cell, suitable to be integrated in a Smart Card microcontroller, is presented. The direct amplification of thermal noise is exploited and an accurate and low area demanding offset zeroing system has been developed in order to increase the statistical quality of the generated bit sequences. Using a 0.18pn n-well CMOS process, a prototype has been fabricated and measured, obtaining a random behavior for an output data rate up to 40Mbis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.