The design of a high-speed IC random number source macro-cell, suitable to be integrated in a Smart Card microcontroller, is presented. The oscillator sampling technique is exploited and a jittered oscillator which features an amplified thermal noise source has been designed in order to increase the output throughput and the statistical quality of the generated bit sequences. The oscillator feedback loop acts as an offset compensation for the noise amplifier, thus solving one of the major issues in this kind of circuit. A numerical model for the proposed system has been developed which allows us to carry out an analytical expression for the transition probability between successive bits in the output stream. A prototype chip has been fabricated in a standard digital 0:18"m n-well CMOS process which features a 10Mbps throughput and fulfills the NIST FIPS and correlation-based tests for randomness. The macro-cell area, excluding pads, is 0:0016mm 2 (184"m  86"m) and a 2:3mW power consumption has been measured.
This paper investigates the design of a dual-rail pre-charge logic family whose power consumption is insensitive to unbalanced load conditions thus allowing adopting a semi-custom design flow (automatic place & route) without any constraint on the routing of the complementary wires. The proposed logic is based on a three phase operation where, in order to obtain a constant energy consumption over the operating cycle, an additional discharge phase is performed after pre-charge and evaluation. In this work, the proposed concept has been implemented as an enhancement of the SABL logic with a limited increase in circuit complexity. Implementation details and simulation results are reported which show a power consumption independent of the sequence of processed data and load capacitances. An improvement in the energy consumption balancing up to 100 times with respect to SABL has been obtained.
Abstract. In this paper, the evaluation of random bit generators for security applications is discussed and the concept of stateless generator is introduced. It is shown how, for the proposed class of generators, the verification of a minimum entropy limit can be performed directly on the post-processed random numbers thus not requiring a good statistic quality for the noise source itself, provided that a sufficient compression is adopted in the post-processing unit. Assuming that the noise source is stateless, a straightforward entropy estimator to drive an adaptive compression algorithm is proposed. Examples of stateless sources are also discussed.Finally, an attack scenario against a noise source is defined and an effective approach to the attack detection is presented. The entropy estimator and the attack detection together guarantee the unpredictability of the generated random numbers.
Attacks based on a differential power analysis (DPA) are a main threat when designing cryptographic processors. In this paper, a countermeasure against DPA is presented and evaluated on a case study simulation. It can be implemented, using a standard digital technology, by applying a straightforward transformation to the original design, without an actual redesign. A methodology to perform a DPA in simulation is presented which can be exploited to test the resistance of a cryptographic processor during its design flow. By using the above methodology, the proposed countermeasure shows a 30dB attenuation of the signals exploited by the DPA.
Differential power analysis is widely recognized as an extremely powerful and low-cost technique to extract secret information from cryptographic devices. As a consequence, DPA-countermeasures have been proposed in the technical literature ranging over every abstraction level in an embedded system, from software to transistor-level techniques. In this paper, a novel gate-level countermeasure is proposed which, exploiting the insertion of random delays in the datapath of a cryptographic processor, allows to randomize not just the instantaneous current consumption profile but also the total charge quantity transferred from the power supply during a clock cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.