In the quest for new energy sources, the research on controlled thermonuclear fusion 1 has been boosted by the start of the construction phase of the International Thermonuclear Experimental Reactor
(ITER). ITER is based on the tokamak magnetic configuration
3, which is the best performing one in terms of energy confinement. Alternative concepts are however actively researched, which in the long term could be considered for a second generation of reactors. Here, we show results concerning one of these configurations, the reversed-field pinch 4,5 (RFP). By increasing the plasma current, a spontaneous transition to a helical equilibrium occurs, with a change of magnetic topology. Partially conserved magnetic flux surfaces emerge within residual magnetic chaos, resulting in the onset of a transport barrier. This is a structural change and sheds new light on the potential of the RFP as the basis for a low-magnetic-field ohmic fusion reactor.The main magnetic field configurations studied for the confinement of toroidal fusion-relevant plasmas are the tokamak 3 , the stellarator 6 and the reversed-field pinch 4,5 (RFP). In the tokamak, a strong magnetic field is produced in the toroidal direction by a set of coils approximating a toroidal solenoid, and the poloidal field generated by a toroidal current flowing into the plasma gives the field lines a weak helical twist. This is the configuration that has been most studied and has achieved the best levels of energy confinement time. Thus, it is the natural choice for the International Thermonuclear Experimental Reactor, which has the mission of demonstrating the scientific and technical feasibility of controlled fusion with magnetic confinement.The RFP, like the tokamak, is axisymmetric and exploits the pinch effect due to a current flowing in a plasma embedded in a toroidal magnetic field. The main difference is that, for a given plasma current, the toroidal magnetic field in a RFP is one order of magnitude smaller than in a tokamak, and is mainly generated by currents flowing in the plasma itself. This feature is underlying the main potential advantage of the RFP as a reactor concept, namely the capability of achieving fusion conditions with ohmic heating only in a much simpler and compact device. In the past, this positive feature was overcome by the poorer stability properties, which led to the growth and saturation of several magnetohydrodynamic (MHD) instabilities, eventually downgrading the confinement performance. These instabilities, represented by Fourier modes in the poloidal and toroidal angles θ and φ as exp [i(mθ − nφ) were considered as an unavoidable ingredient of the dynamo self-organization process 4,8,9 , necessary for the sustainment of the configuration in time. The occurrence of several MHD modes resonating on different plasma layers gives rise to overlapping magnetic islands, which result in a chaotic region, extending over most of the plasma volume 10 , where the magnetic surfaces are destroyed and the confinement level is modest. This conditi...