analysis of the data shows (i) that the porosity distributions for the Upper Chalk of the Southern and Thames & Chilterns regions are indistinguishable, (ii0 that the porosity distributions for the middle and Lower Chalk of the East Anglian region are indistinguishable, and (iii) that the porosity distributions for each of the gross stratigraphical units from all other regions are statistically discrete. Porosities range from 3.3% to 55.5%, with a mean porosity of 34.0%. Dry densities range from 1210 kg/m3 to 2510 kg/m3, with a mean dry density of 1790 kg/m3. In a given region there is a trend of increasing porosity from Lower to Middle to Upper Chalk. There are systematic variations in porosity between the regions. There is a trend of increasing porosity from the Northern England region to the Southern England region, to the Thames & Chilterns region, to East Anglia. No significant systematic variations in porosity-depth gradients were observed. Chalk porosity-depth gradients are typically high, of the order of-0.07 to-0.1 porosity per cent per metre.
With the growing importance of groundwater protection, there is increasing concern about the possibility of rapid groundwater flow in the Chalk of southern England and therefore in the frequency and distribution of ‘karstic’ features. Pumping test data, although useful in quantifying groundwater resources and regional flow, give little information on groundwater flow at a local scale. Evidence for rapid groundwater flow is gathered from other, less quantifiable methods. Nine different strands of evidence are drawn together: tracer tests; observations from Chalk caves; Chalk boreholes that pump sand; descriptions of adits; the nature of water-level fluctuations; the Chichester flood; the nature of the surface drainage; geomorphological features; and the presence of indicator bacteria in Chalk boreholes. Although the evidence does not prove the widespread existence of karstic features, it does suggest that rapid groundwater flow should be considered seriously throughout the Chalk. Rapid groundwater flow is generally more frequent close to Palaeogene cover and may also be associated with other forms of cover and valley bottoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.