Fetal bovine serum (FBS) is a common supplement to in vitro culture media. A workshop was organized to discuss whether or not fetuses might suffer when blood is withdrawn, and to discuss serum replacement methods. When bovine fetuses are exposed after slaughter of the dam, they can suffer only if they inflate their lungs with air and increase their blood oxygen to levels compatible with awareness. Preventing fetuses from breathing air or killing them by an efficient method, according to clearly defined safeguards, ensures that fetal blood collection is humane. Since serum is a supplement of unknown composition, which could be contaminated with unwanted factors, there are scientific and safety reasons for omitting FBS from culture media. Several media have been developed in which minimal or no animal derived components are present. Also, different cell types have been adapted to serum-free media. As yet, no standard serum free media are present, and each cell type requires its own medium composition. Among other recommendations, the establishment of a public database with information on cell types and their serum-free medium composition is proposed.
The present study addresses the questions whether on-farm use of local anaesthesia with lidocaine leads to a reduction in pain responses during castration, and whether the non-steroidal anti-inflammatory drug meloxicam improves technical performance after castration of piglets. Five treatments were included in the study: (1) castration without anaesthesia or analgesia (CAST), (2) castration after local anaesthesia with lidocaine (LIDO), (3) castration after administration of meloxicam (MELO), (4) castration after lidocaine and meloxicam (L 1 M) and (5) sham castration (SHAM). To reduce litter influences, each treatment was present in each of the 32 litters (n 5 32 per treatment). During castration, vocalizations were recorded continuously. Blood samples were collected 15 min before and 20 min after castration for determination of plasma levels of total cortisol, glucose, lactate and creatine kinase (CK). Mortality was registered and piglets were weighed several times to calculate growth. Several aspects of vocalizations during castration showed consistent and significantly different levels in CAST compared with LIDO, L 1 M and SHAM. CAST piglets squealed longer, louder and higher. Vocalizations of MELO piglets most resembled those of CAST. An increase in cortisol was seen in all treatments. However, in SHAM piglets this increase was significantly lower than in the other treatments. LIDO piglets showed a significantly smaller increase in plasma cortisol levels compared with CAST and MELO. L 1 M piglets differed significantly only from the SHAM group. Lactate levels differed significantly between LIDO and MELO, the level in LIDO being decreased after castration. In the other treatments an increase was measured. No treatment effects were found in plasma glucose and CK levels, nor in growth and mortality of the piglets. In conclusion, on the basis of vocalizations and plasma cortisol, local anaesthesia with lidocaine reduces pain responses in piglets during castration. A positive effect of meloxicam on technical performance was not found.
Physiological parameters, metabolic parameters and stress-related hormones are evaluated in horses anaesthetized with isoflurane in oxygen combined with lidocaine intravenously. Two groups of horses anaesthetized with isoflurane (six horses in each group) were studied: a lidocaine group (IL), which received intravenous lidocaine and a control group (C), which received intravenous saline. Horses in both groups were premedicated with detomidine (i.v.), and anaesthesia was induced with midazolam-ketamine (i.v.). The lidocaine group received intravenous lidocaine as a loading dose of 2.5 mg kg(-1) at 15 min after induction of anaesthesia directly followed by a maintenance dosage of 50 microg kg(-1) min(-1), while the control group received saline (i.v.) following the same regime. End-tidal isoflurane and standard physiological parameters were measured. Blood was sampled for measurement of lidocaine, stress hormones and metabolic parameters. The end-tidal isoflurane concentration in the lidocaine group was 0.96 +/- 0.06% versus 1.28 +/- 0.06% (mean +/- SD) in the control group, a significant (P < 0.05) reduction of 25%. No significant differences were found regarding stress-related hormones, metabolic and physiological parameters. This study suggests that the use of lidocaine to decrease the concentration of isoflurane to obtain a sufficient surgical anaesthesia has no subsequent effects on physiological and metabolic parameters or stress-related hormones.
Assessing unconsciousness is important to safeguard animal welfare shortly after stunning at the slaughter plant. Indicators that can be visually evaluated are most often used when assessing unconsciousness, as they can be easily applied in slaughter plants. These indicators include reflexes originating from the brain stem (e.g. eye reflexes) or from the spinal cord (e.g. pedal reflex) and behavioural indicators such as loss of posture, vocalisations and rhythmic breathing. When physically stunning an animal, for example, captive bolt, most important indicators looked at are posture, righting reflex, rhythmic breathing and the corneal or palpebral reflex that should all be absent if the animal is unconscious. Spinal reflexes are difficult as a measure of unconsciousness with this type of stunning, as they may occur more vigorous. For stunning methods that do not physically destroy the brain, for example, electrical and gas stunning, most important indicators looked at are posture, righting reflex, natural blinking response, rhythmic breathing, vocalisations and focused eye movement that should all be absent if the animal is unconscious. Brain stem reflexes such as the cornea reflex are difficult as measures of unconsciousness in electrically stunned animals, as they may reflect residual brain stem activity and not necessarily consciousness. Under commercial conditions, none of the indicators mentioned above should be used as a single indicator to determine unconsciousness after stunning. Multiple indicators should be used to determine unconsciousness and sufficient time should be left for the animal to die following exsanguination before starting invasive dressing procedures such as scalding or skinning. The recording and subsequent assessment of brain activity, as presented in an electroencephalogram (EEG), is considered the most objective way to assess unconsciousness compared with reflexes and behavioural indicators, but is only applied in experimental set-ups. Studies performed in an experimental set-up have often looked at either the EEG or reflexes and behavioural indicators and there is a scarcity of studies that correlate these different readout parameters. It is recommended to study these correlations in more detail to investigate the validity of reflexes and behavioural indicators and to accurately determine the point in time at which the animal loses consciousness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.