This study highlights the effect of drought and ambient temperature on performance and herbage quality of legume monocultures and grass-legume mixtures. In a field experiment, the total dry matter yield, seasonal pattern of dry matter yield distribution, content of crude protein and crude fibre of monocultures of red clover and alfalfa and grass-legume mixtures were investigated during two consecutive dry years (2011-2012). Alfalfa cultivars Kamila and Tereza grown as monocultures or as mixtures with Festulolium braunii (cultivar Achilles) outperformed the red clover cultivars Fresko and Veles and provided a well-balanced total and seasonal dry matter yield during both years. Across all experimental years, crude protein content was significantly higher at alfalfa monocultures and mixture when compared with clover monocultures (P < 0.05). However, considerable lower content of crude fibre at clover monocultures in comparison with alfalfa ones was found. Responses of nutritive parameters of both legume species to weather variables were different. Crude protein content in red clover was independent of rainfall and temperature. In contrast, the crude fibre content correlated with temperature whereby the alfalfa monocultures showed stronger correlations (P < 0.05) than red clover monocultures.
Floodplains are among the most precious and threatened ecosystems in the world. The study deals with floodplain soil contamination caused by 8 heavy metals (HMs) (Cd, Co, Cr, Cu, Mo, Ni, Pb, Zn) originating and transported from old mine works along the Štiavnica River in Slovakia. We determined the total HMs content and the HM fractions using BCR sequential extraction method. We selected 12 alluvial sites (AS), two contaminated sites (CS), and one reference site (RS). The sampling points were located within the riparian zones (RZ), arable lands (AL), and grasslands (GL). We confirmed soil contamination by HMs and the related ecological risk by different factors. The contamination by HMs at many AS localities was similar or even higher than at CS localities. The highest contamination factor was calculated for Cu (39.8), followed by Pb (27.4), Zn (18.2), and Cd (7.2). The HMs partitioning in the different fractions at the CS and AS localities revealed that Cd, Zn, and Pb were mainly associated with the exchangeable and reducible fractions, while Cu was mainly associated with the oxidisable fraction. The soil properties were selectively correlated with the HM fractions. Based on the ANOVA results, the effect of different ecosystem types on HM fractions was revealed.
Water retention is an important hydrological ecosystem service of active floodplain soils. The aim of the study was to evaluate the soil chemical, physical, and hydrological properties in Fluvisols in three different ecosystems that have an impact on water retention hydrological ecosystem services (WRHESs). We selected 16 localities along the Štiavnica River in Central Slovakia, 8 located in riparian zones (RZ), 5 in arable lands (AL), and 3 in grasslands (GL). Soil samples were collected from two layers (0–10 and 20–30 cm). In the laboratory, the soil physical (soil texture) and soil chemical properties (pH, soil organic carbon content, humic and fulvic acid ratio) were determined. Using undisturbed soil samples, the soil physical characteristics (particle density, bulk density, porosity, and actual soil moisture–SMa) were measured. With the help of pedotransfer functions, hydrological soil properties (field water capacity–FWC, wilting point–WP, available water capacity–AWC) were estimated. The recorded properties differed between the localities, ecosystems, and two layers. The SMa values showed a higher soil water retention potential of extensively used ecosystems, such as GL and RZ. However, the hydrological properties estimated by pedotransfer functions (FWC, WP, AWC) showed a higher soil water retention potential in AL localities. This indicated that for calculations, selected pedotransfer functions (particle size fractions, organic matter, and bulk density) and other soil or ecosystem properties (e.g., vegetation cover, meteorological conditions) have an impact on WRHESs. One such soil factor can be the quality of organic matter. On the basis of the results of the ANOVA, significant differences emerged between the different ecosystems for selected basic chemical, physical, and hydrological properties. The effect of the soil layer on the soil properties was revealed only in the case of SOC. The results indicated the effect of different ecosystems on soil WRHES and the importance of extensively managed ecosystems, such as RZ and GL. From this point of view, the reduction in the RZ and GL areas during a period of the last 70 years is negative. The findings should be taken into account in future sustainable floodplain management and landscape architecture.
The expanding demand for new critical raw materials can lead to their increased release to the environment in the form of emerging environmental contaminants (EECs). However, there has never been a comprehensive study that takes into account the total EEC content, the content of various EEC fractions, their behaviour in floodplain soils, and potential ecological and human health risks. The occurrence, fractions, and influencing factors of the seven EECs (Li, Be, Sr, Ba, V, B, Se) originating from historical mining in floodplain soils of various ecosystems (arable lands, grasslands, riparian zones, contaminated sites) were investigated. Based on the evaluation of the overall levels of EECs (potentially toxic elements) in comparison to the soil guideline values set by European legislation for Be, Ba, V, B, and Se, it was found that only Be did not exceed the recommended limits. Among the elements analyzed, Li had the highest average contamination factor (CF) of 5.8, followed by Ba with 1.5 and B with 1.4. Particularly concerning was the discovery of a potential serious health risk associated with Li exposure for children, as indicated by hazard quotients ranging from 0.128 to 1.478. With the exception of Be and Se, the partitioning of the EECs into the different fractions revealed that the EECs are primarily bound with the residual fraction. Be (13.8%) had the highest percentage of exchangeable fraction as the most bioavailable in the first soil layer, followed by Sr (10.9%), Se (10.2%), Ba (10.0%), and B (2.9%). The most frequently observed correlations were between EEC fractions and pH/KCl, followed by soil organic carbon and manganese hydrous oxides. Variance analyses confirmed the impact of different ecosystems on EEC total content and fractions.
Possibilities were studied for using digested substrate as fertiliser applied to grassland. Over 2008-2009, a research trial consisting of four treatments in four replicates (the non-fertilised control; sward fertilized with digested substrates from 100% slurry; 80% slurry and 20% phytomass; 60% slurry and 40% phytomass) was performed on seminatural grassland at Radvaň site. In the sward utilised by three cuts a year, these parameters were studied: botanical composition, dominant species, herbage production, organic matter and mineral substances. At the fertilized treatments, the proportion of grasses was higher in 2009 than in 2008, but that of legumes and other herbs decreased. Dominant grasses were Poa pratensis L., Festuca rubra L., Lolium perenne L., Trisetum flavescens L. while Trifolium repens L. and Medicago falcata L. dominated among legume species. The application of digested substrate as fertiliser showed positive effects on herbage production, the highest increase was found at Treatment 4 where the digested substrate consisting of 60% slurry and 40% phytomass was applied. The highest amounts of crude protein (CP), calcium (Ca) and magnesium (Mg) were recorded at the treatment with the digested substrate composed of 80% slurry and 20% phytomass applied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.