Hydrogen adsorption on the ͑2ϫ4͒ and ͑4ϫ2͒ reconstructions of gallium arsenide ͑001͒ has been studied by internal reflectance infrared spectroscopy and ab initio cluster calculations with density-functional theory. The calculations are made on Ga 5 As 4 H 11,13 , Ga 4 As 5 H 11,13 , and Ga 7 As 8 H 19 clusters, which model the arsenic-and gallium-dimer termination of the semiconductor surface. Excellent agreement has been achieved between the vibrational frequencies predicted by the theory and those observed in experiments. On the ͑2ϫ4͒, hydrogen adsorbs on arsenic dimers to form isolated and coupled arsenic-monohydrogen bonds, and arsenic-dihydrogen bonds. Conversely, on the ͑4ϫ2͒, hydrogen adsorbs on gallium dimers to form terminal and bridged gallium hydrides. The latter species occur in isolated or coupled structures involving two or three Ga atoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.