The management of exotic, invasive plants is among the most challenging undertakings of natural resource managers, particularly in large, remote landscapes. The availability of information on the distribution and abundance of invasive plants is vital for effective strategic planning yet is often unavailable because of high costs and long procurement times. This paper presents results of a large-scale invasive plant mapping effort in the Florida Everglades utilizing digital aerial sketch mapping (DASM) and evaluates its utility for guiding management decisions. The distribution and abundance (cover) of four priority invasive plant species—Australian pine, Brazilian pepper, melaleuca, and Old World climbing fern—were mapped over 728,000 ha in the Everglades during 2010 to 2012. Brazilian peppertree was the most widely distributed and abundant species, occupying 30,379 ha. Melaleuca was also widely distributed and occupied 17,802 ha. Old World climbing fern occupied only 7,033 ha but its distribution was generally concentrated in heavy infestations in the northern Everglades. Australian pine was the least abundant of the mapped species and tended to be limited to the southeastern Everglades region. DASM proved to be a cost-effective means of obtaining region-wide distribution and abundance information for these species at broad scales (> 500 m), but detection rates and positional accuracy declined at finer scales. Both canopy type (forested vs. unforested) and distance from flight transect appear to be important factors for detection accuracy.
Obtaining spatially explicit, cost-effective, and management-relevant data on invasive plant distributions across large natural areas presents considerable challenges. This is especially true when multiple monitoring objectives exist, because the utility of different monitoring methodologies varies with scale, logistical considerations, and information needs. The Florida Everglades is a vast wetland landscape with widespread invasive plant infestations and multiple management jurisdictions. A multi-agency team Working Group conducted a workshop in 2013 to explore opportunities to enhance the performance of a regional weed control program. Among the most important developments occurring at this meeting was the recognition that relevant management questions are scale-dependent. This led the team to define multiple monitoring objectives. Essential for conveying the success of the weed management program is quantifying large-scale patterns of change, as are quantifying fine-scale patterns informing control activities, defining mechanisms of spread, recognizing accelerating rates of spread, and detecting patterns of occupancy immediately before management intervention. The group’s deliberation resulted in the emergence of a multiscale monitoring program utilizing several distinct monitoring protocols, including systematic landscape-level reconnaissance, a sample-based spatially stratified monitoring system, detailed inventories in planned treatment areas, and a set of methods focused solely on early detection and rapid response. Here we provide an overview of the Everglades multiscale invasive plant monitoring program, highlight benefits and challenges of each program component, and discuss how this program has improved regional invasive plant management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.