The Walls Boundary Fault Zone is a crustal-scale strike-slip fault that cuts Precambrian–Caledonian basement terranes in Shetland and has been interpreted as the northern continuation of the Great Glen Fault Zone in Scotland. This paper presents the first detailed account of the kinematic history and fault rock assemblages associated with the onshore evolution of the Walls Boundary Fault Zone. These observations suggest that it initiated as a major late Caledonian (Silurian–Devonian) sinistral strike-slip fault associated with the successive development of mylonites and cataclasites. These fault rocks are preserved only locally, and elsewhere are obscured by the effects of later brittle overprinting and dismemberment of the fault zone during dextral strike-slip reactivation, probably during late Carboniferous inversion of the Orcadian Basin. This led to the development of extensive cataclasite and fault gouge assemblages, which are widely preserved along the Walls Boundary Fault. Narrow zones of post-Triassic dip-slip, and finally sinistral strike-slip, reactivation are localized within earlier-formed gouge-filled fault cores. There are some similarities to the kinematic history of the Great Glen Fault Zone, most notably the recognition of late Caledonian sinistral shear and post-Devonian dextral reactivation, but the post-Triassic reactivation histories appear to differ significantly.
Apparently cogenetic mylonite–pseudotachylite assemblages are commonly reported in major fault zones. They represent two very incompatible modes of deformation, and complex formation mechanisms have been proposed to explain this paradox. We report here one such assemblage from Central Norway in which apparently synchronous mylonite and pseudotachylite formation is separated by 100 Ma-mean muscovite Ar/Ar laserprobe spot ages from mylonite, and pseudotachylite matrix, are 406 ± 11 Ma and 290 ± 10 Ma respectively. In preference to a complex cogenetic model we invoke fault reactivation as a viable alternative, and suggest that assumed contemporaneity in such assemblages may be invalid in many cases.
The Walls Boundary Fault in Shetland, Scotland, formed during the Ordovician–Devonian Caledonian orogeny and underwent dextral reactivation in the Late Carboniferous. In a well-exposed section at Ollaberry, westerly verging, gently plunging regional folds in the Neoproterozoic Queyfirth Group on the western side of the Walls Boundary Fault are overprinted by faults and steeply plunging Z-shaped brittle–ductile folds that indicate contemporaneous right-lateral and top-to-the-west reverse displacement. East of the Walls Boundary Fault, the Early Silurian Graven granodiorite complex exhibits fault-parallel fractures with Riedel, P and conjugate shears indicating north–south-striking dextral deformation and an additional contemporaneous component of east–west shortening. In the Queyfirth Group, the structures are arranged in geometrically and kinematically distinct fault-bounded domains that are interpreted to result from two superimposed tectonic events, the youngest of which displays evidence for bulk dextral transpressional strain partitioning into end-member wrench and contractional strain domains. During dextral transpressional deformation, strain was focused into pelite horizons and favourably aligned pre-existing structures, leaving relicts of older deformation in more competent lithologies. This study highlights the importance of pre-existing structures and lithological heterogeneity during reactivation and suggests the development of a regional transpressional tectonic environment during the Late Carboniferous on the Shetland Platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.