Thin CdTe layers embedded in ZnTe matrix grown by atomic layer epitaxy have been studied by time resolved spectroscopy and spatially resolved spectroscopy. The presence of Cd-rich dotlike islands in these CdTe nanostructures is shown by both atomic force microscopy and high resolution transmission electron microscopy. Zero-dimensional nature of excitons is shown both by the temperature dependence of the decay time and observation of sharp exciton lines in microphotoluminescence spectra. Zero-dimensional excitons probed by microphotoluminescence present a doublet structure linearly polarized along two orthogonal directions. This doublet structure is attributed to bright heavy-hole exciton states split by the local asymmetry of the localization potential. Reversible spectral shifts in the emission of some single quantum dots are observed on a time scale of hundreds of milliseconds. These small shifts can be attributed to the Stark effect caused by fluctuating electric fields and can significantly affect time-integrated transition linewidths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.