The problem of freeze-out (FO) in relativistic heavy-ion reactions is addressed. We develop and analyze an idealized one-dimensional model of FO in a finite layer, based on the covariant FO probability. The resulting post FO phase-space distributions are discussed for different FO probabilities and layer thicknesses.
Freeze-out of particles across 3-dimensional space-time hypersurface with
space-like normal is discussed in a simple kinetic model. The final momentum
distribution of emitted particles shows a non-exponential transverse momentum
spectrum, which is in quantitative agreement with recently measured SPS pion
and $h^-$ spectra.Comment: 4 pages, 1 figure. Quark Matter'99 Proceeding
We study freeze out process of particles across a three dimensional space-time hypersurface with space-like normal. The problem of negative contribution is discussed with respect to conservation laws, and a simple and practical new one-particle distribution for the post FO side is introduced, the Cancelling Jüttner (CJ) distribution.
The Freeze Out (FO) problem is addressed for a covariant FO probability and a finite FO layer with a time-like normal vector continuing the line of studies introduced in Ref. [1]. The resulting post FO momentum distribution functions are presented and discussed. We show that in general the post FO distributions are non-thermal and asymmetric distributions even for time-like FO situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.