A number of manufacturing companies have reported anecdotal evidence describing the benefits of Model-Based Enterprise (MBE). Based on this evidence, major players in industry have embraced a vision to deploy MBE. In our view, the best chance of realizing this vision is the creation of a single “digital thread.” Under MBE, there exists a Model-Based Definition (MBD), created by the Engineering function, that downstream functions reuse to complete Model-Based Manufacturing and Model-Based Inspection activities. The ensemble of data that enables the combination of model-based definition, manufacturing, and inspection defines this digital thread. Such a digital thread would enable real-time design and analysis, collaborative process-flow development, automated artifact creation, and full-process traceability in a seamless real-time collaborative development among project participants. This paper documents the strengths and weaknesses in the current, industry strategies for implementing MBE. It also identifies gaps in the transition and/or exchange of data between various manufacturing processes. Lastly, this paper presents measured results from a study of model-based processes compared to drawing-based processes and provides evidence to support the anecdotal evidence and vision made by industry.
Copper will probably replace aluminum alloys as the interconnect metallurgy of choice for high performance semiconductor devices. This transition will challenge the suitability of established practices in focused ion beam (FIB) chip repair. A fundamental rethink in methodology, techniques, and process gases will be required to deal with the new metal films. This paper discusses the results of recent experiments in the areas of FIB exposure, cuts and connections to buried copper lines. While copper tends to mill faster than aluminum, etch rate variations due to grain structure tend to make reliable isolation cuts more difficult. The films also have been shown to suffer regrowth and surface reactions during long term storage following FIB exposure. Attempts at halogen gas assisted etch (GAE) mills result in undesirable removal characteristics, and in the case of bromine, the spontaneous destruction of all exposed copper in the immediate area. Resistance measurements and reliability of deposited tungsten connections to copper lines are also presented. In addition, the latest techniques developed for aluminum wiring isolation and device characterization are shown. These include 'cleanup' methods for achieving good circuit isolation without the extensive use of local oxide deposition, and the latest multilevel version of the FIB ‘wagon wheel’ for SRAM cell characterization. Also included is preliminary data from a custom built FIB chamber four manipulator prober module.
Microchip circuit simulation modeling cannot always duplicate all of the independent variables found in a system level application. Sometimes, monitoring the logic states at multiple internal nodes when operating in the native environment is the only way of debugging a subtle design error. In this situation, Focused Ion Beam (FIB) technology was used to provide microprobe access points to deeply buried nets, allowing levels of real-time mapping not available by any other method. Data extraction was accomplished by probing the socketed chip on a rigidly mounted AT bus video card. The driver was a fully disassembled personal computer running a graphics intensive program. The close collaboration between failure analyst, applications engineering and the chip designers made this a truly unique experience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.