A second secreted ribonuclease, designated binase II, has been detected in Bacillus intermedius 7P, and its structural gene was cloned and sequenced. Unlike the well-known binase I, a 109-amino acid guanyl-specific enzyme, the 292-residue binase II is closely related to the B. subtilis nuclease Bsn, in structure and in its enzymatic properties. Binase II is also insensitive to inactivation by barstar, an inhibitor protein that is specific for guanyl-specific ribonucleases. While both B. intermedius enzymes are induced upon phosphate starvation, only the gene for binase I belongs to the pho regulon system and carries pho-box elements adjacent to its promoter sequence. The gene for binase II is similar to that for Bsn in lacking such elements. The birB gene coding for binase II appears to be located next to the 3'-end of a ferric ion transport operon, with which it convergently overlaps. This would allow attenuator control over binase II expression under conditions of starvation for ferric ions.
Promoters of the genes for guanyl-specific ribonucleases, secreted by B. intermedius (binase) and B. pumilus (Rnase Bp) in phosphate deficient conditions, contain regions similar to appropriate consensus sequences in promoters of the PHO regulated genes of B. subtilis. A number of genes expressed in response to phosphate starvation in B. subtilis are regulated by the two component signal transduction system PhoP-PhoR. Expression of recombinant genes for binase and RNase Bp in B. subtilis strains with mutations in the regulatory protein genes of the PHO regulon was studied. Their expression is strongly regulated by the regulatory proteins of the B. subtilis PHO regulon. z
To elucidate the functional role of Arg VP and Arg VT in the enzyme activity of binase, the extracellular ribonuclease of Bacillus intermedius, we used site-directed mutagenesis. On cleavage of various substrates the catalytic activity of binase mutant Arg VT Ala is 2.7U10 Q^7 .7U10 Q times less than that of the native enzyme. The decrease in activity is determined preferentially by the decrease in the molecular rate constant k t with a relatively small change of enzyme-substrate affinity, characterized by K m . This is the expected result if Arg VT acts to lower the energy of a transition state of the reaction. The replacement of Arg VP by Ala causes a 5^19-fold activity decrease, depending on the substrate. We propose that this residue does not have a direct catalytic function in the molecular mechanism of the binase action and that the activity decrease of binase on the replacement of Arg VP by alanine is mediated by the effect of Arg VP on the pK of catalytic residues.z 1998 Federation of European Biochemical Societies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.