In this paper, we report the wafer-scale fabrication of carbon nanotube field-effect transistors (CNTFETs) with the dielectrophoresis (DEP) method. Semiconducting carbon nanotubes (CNTs) were positioned as the active channel material in the fabrication of carbon nanotube field-effect transistors (CNTFETs) with dielectrophoresis (DEP). The drain-source current (IDS) was measured as a function of the drain-source voltage (VDS) and gate-source voltage (VGS) from each CNTFET on the fabricated wafer. The IDS on/off ratio was derived for each CNTFET. It was found that 87% of the fabricated CNTFETs was functional, and that among the functional CNTFETs, 30% of the CNTFETs had an IDS on/off ratio larger than 20 while 70% of the CNTFETs had an IDS on/off ratio lower than 20. The highest IDS on/off ratio was about 490. The DEP-based positioning of carbon nanotubes is simple and effective, and the DEP-based device fabrication steps are compatible with Si technology processes and could lead to the wafer-scale fabrication of CNT electronic devices.
Carbon nanostructures used as the active channel material in field effect transistors (FETs) are appealing in microelectronics for their improved performance, such as their high speed and low energy dissipation. However, these devices require the incorporation of nanostructure transfer steps in the fabrication process flow, which makes their application difficult in large scale integrated circuits. Here we present a novel method for the fabrication of FETs with nanostructured carbon in the channel with p-type semiconducting properties and intermediate drain-source current (I DS ) on/off ratio. The method is based on the use of Ni nanoparticles in the source-drain gap region as the seed material for the formation of carbon nanostructures in the FET channel. FETs without Ni nanoparticles in the channel showed no modulation of I DS as a function of gate voltage. The device fabrication process does not require any carbon nanostructure transfer steps since it directly forms carbon nanostructures electrically connected to the device's source and drain electrodes via electron-beam evaporation of carbon and conventional lithographic processes. Since all device fabrication steps are compatible with existing Si technology processes, they are capable of being further optimized following process development protocols practiced by the semiconductor industry.
CZT is a semiconductor material that promises to be a good candidate for uncooled gamma radiation detectors. However, to date, technological difficulties in production of large size defectfree CZT crystals are yet to be overcome. The most common problem is accumulation of tellurium precipitates as microscopic inclusions. These inclusions influence the charge collection through charge trapping and electric field distortion. The common work-around solutions are to fabricate pixelated detectors by either grouping together many small volume CZT crystals to act as individual detectors, or to deposit a pixelated grid of electrical contacts on a larger, but defective, crystal, and selectively collect charge. These solutions are satisfactory in an R&D environment, but are unsuitable for mass production and commercial development. Our modeling effort is aimed at quantifying the various contributions of tellurium inclusions in CZT crystals to the charge generation, transport, and collection, as a function of inclusions size, position, and concentration. We model the energy deposition of gamma photons in the sensitive volume of the detector using LANL's MCNP code. The electron-hole pairs produced at the energy deposition sites are then transported through the defective crystal and collected as integral charge at the electrical contact sites using CERN's Garfield software package. The size and position distribution of tellurium inclusions is modeled by sampling experimentally measured distributions of such inclusions on a variety of commercially-grown CZT crystals using IR microscopy and image processing software packages.
The application of electrochemical grinding to the production of complex cylindrical test specimens of novel high-temperature materials is described. Design features and the performance of an ECM cylindrical grinding machine are presented. The process reduced the grinding time per specimen from several hours to a few minutes and resulted in comparable or superior surface finish and dimensional tolerances, as well as a marked reduction in wheel wear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.