The present tendency of creating new aircraft engines with a higher level of fuel efficiency leads to the necessity to increase gas temperature at a high pressure turbine (HPT) inlet. To design such type of engines, the improvement of accuracy of the computational analysis is required. According to this the numerical analysis methods are constantly developing worldwide. The leading firms in designing aircraft engines carry out investigations in this field. However, this problem has not been resolved completely yet because there are many different factors affecting HPT blade heat conditions. In addition in some cases the numerical methods and approaches require tuning (for example to predict laminar-turbulent transition region or to describe the interaction of boundary layer and shock wave). In this work our advanced approach of blade heat condition numerical estimation based on the three-dimensional computational analysis is presented. The object of investigation is an advanced aircraft engine HPT first stage blade. The given analysis consists of two interrelated parts. The first part is a stator-rotor interaction modeling of the investigated turbine stage (unsteady approach). Solving this task we devoted much attention to modeling unsteady effects of stator-rotor interaction and to describing an influence of applied inlet boundary conditions on the blade heat conditions. In particular, to determine the total pressure, flow angle and total temperature distributions at the stage inlet we performed a numerical modeling of the combustor chamber of the investigated engine. The second part is a flow modeling in the turbine stage using flow parameters averaging on the stator-rotor interface (steady approach). Here we used sufficiently finer grid discretization to model all perforation holes on the stator vane and rotor blade, endwalls films in detail and to apply conjugate heat transfer approach for the rotor blade. Final results were obtained applying the results of steady and unsteady approaches. Experimental data of the investigated blade heat conditions are presented in the paper. These data were obtained during full size experimental testing the core of the engine and were collected using two different type of experimental equipment: thermocouples and thermo-crystals. The comparison of experimental data and final results meets the requirements of our investigation.
The experience gained in structural modifying the low-pressure drop gas turbine engine fuel atomizer with two air nozzles is presented. The volume of fluid (VOF) approach is used for analyzing the two-phase flows to describe the numerical analysis of atomization quality. The base design and the design based on numerical analysis are compared by using a full-scale experiment.
Пермский государственный национальный исследовательский университет, Пермь, Российская Федерация С помощью новой двумерной модели мезомасштабных процессов оценивается влияние неоднородности температуры и влажности на образование вихревых структур в нижнем слое атмосферы. Вывод модели осуществляется на основе локальноравновесного подхода путем усреднения поперек слоя исходных трехмерных уравнений, описывающих мезомасштабные атмосферные процессы. Для замыкания системы, заключающегося в определении нелинейных слагаемых и значений на границах полей скорости, температуры и влажности через усредненные поля, используется точное решение исходной задачи, описывающее однородное по горизонтальным координатам течение. Это решение находится для бесконечного горизонтального вращающегося слоя в предположении несжимаемости воздуха в нижнем слое атмосферы и линейного распределения температуры и влажности подстилающей поверхности. Численные расчеты проводились методом сеток с помощью явной конечно-разностной схемы на сетке 200×200 узлов. Рассматривалась площадка 40 на 40 километров в северо-западной части города Перми и прилежащих окрестностях. Расчеты показали, что на фоне значительных горизонтальных градиентов температуры воздуха и влажности в нижнем слое атмосферы возникают вихревые структуры с вертикальной осью вращения. Появление вихревых структур обуславливается также конфигурацией зон значительных градиентов и их расположением относительно движущегося воздуха. Ключевые слова: моделирование пограничного слоя атмосферы, неоднородность температуры и влажности, численные расчеты
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.