Twenty-four organic Fe sources were evaluated by polarographic analysis and via solubility in buffers (pH 5 and 2) and deionized water. Organic Fe sources included 6 Fe-Met complexes (Fe-Met), 10 Fe-Gly complexes, 1 Fe-Lys complex, 4 Fe proteinates, and 3 Fe-AA complexes (Fe-AA). Sources varied considerably in chemical characteristics. Chelation strengths (quotient of formation [Q] values) ranged from weak (Q = 1.08) to extremely strong strength (Q = 8,590). A total of 1,170 1-d-old Arbor Acres male broilers were randomly allotted to 6 replicate cages (15 chicks/cage) for each of 13 treatments in a completely randomized design involving a 4 × 3 factorial arrangement of treatments (4 Fe sources × 3 added Fe levels) plus a control with no added Fe. Dietary treatments included a corn-soybean meal basal diet (control; 55.8 mg Fe/kg) and the basal diet supplemented with 20, 40, or 60 mg Fe/kg as iron sulfate (FeSO∙7HO); an Fe-Met with weak chelation strength (Fe-Met W; Q = 1.37; 14.7% Fe); an iron proteinate with moderate chelation strength (Fe-Prot M; Q = 43.6; 14.2% Fe); or an iron proteinate with extremely strong chelation strength (Fe-Prot ES; Q = 8,590; 10.2% Fe). The growth performance, Fe concentrations, hematological indices, and activities and gene expressions of 2 Fe-containing enzymes in tissues of broilers at 7, 14, and 21 d of age were determined in the present study. Transferrin saturation in plasma on 14 d; bone Fe on d 7 and 14; liver Fe on d 7, 14, and 21; kidney Fe on d 14; succinate dehydrogenase activities in the liver on d 21 and in the kidney on d 7 and 21; mRNA levels in the kidney and heart on d 14; and mRNA levels in the liver and kidney on d 21 linearly increased ( < 0.05) as added Fe levels increased. However, differences in bioavailabilities among Fe sources were detected ( < 0.05) only for the mRNA levels in the liver and kidney on d 21. Based on slope ratios from the multiple linear regression of mRNA level in the liver or kidney of broilers on d 21 on daily dietary analyzed Fe intake, the bioavailabilities of Fe-Met W, Fe-Prot M, and Fe-Prot ES relative to iron sulfate (100%) were 129 ( = 0.18), 164 ( < 0.003), and 174% ( < 0.001) or 102 ( = 0.95), 143 ( = 0.09), and 174% ( < 0.004), respectively. These results indicated that the relative bioavailabilities of organic Fe sources were closely related to their Q values and organic Fe sources with greater Q values showed higher Fe bioavailabilities.
The objective of this study was to investigate the effects of dietary supplemental Zn on growth performance, carcass traits, and meat quality of broilers. Dietary treatments included the corn-soybean meal-based diet (control) and the basal diet supplemented with 60, 120, or 180 mg of Zn/kg as ZnSO(4), Zn amino acid A, Zn proteinate B, or Zn proteinate A. The results showed that birds fed diets supplemented with Zn had higher ADFI, ADG, and percentage of eviscerated yield than birds fed the control diet. Supplemental Zn significantly increased the redness value in breast muscle and pH values in thigh muscle, decreased shear force in thigh muscle, and decreased drip loss in breast and thigh muscle. The DM and intramuscular fat contents of the breast muscle in broilers fed diets with supplemental Zn were higher than those of the control. Results from this study indicated that Zn could promote growth and improve production performance of broilers independent of Zn source.
An experiment was conducted to investigate the effect of dietary non-phytate phosphorus (NPP) level on growth performance, bone characteristics and phosphorus metabolism-related gene expressions, so as to evaluate the dietary NPP requirement of broiler chicks fed a conventional corn-soybean meal diet from 1 to 21 d of age. A total of 540 day-old Arbor Acres male chicks were randomly allocated to one of nine treatments with six replicate cages of 10 birds per cage in a completely randomized design, and fed a basal corn-soybean meal diet (containing 0.08% of NPP) supplemented with 0.10, 0.15, 0.25, 0.30, 0.35, 0.40, 0.45, or 0.50% of inorganic phosphorus in the form of CaHPO·2HO, respectively. Each diet contained the constant calcium content of about 1.0%. The results showed that daily weight gain, serum inorganic P, tibia bone strength, tibia ash percentage, tibia bone mineral content (BMC) and density (BMD), middle toe ash percentage, middle toe BMC and BMD were affected (P < 0.0001) by dietary NPP level, and increased linearly (P < 0.0001) and quadraticly (P < 0.004) as dietary NPP levels increased. The gene expression of type IIb sodium-phosphate cotransporter (NaPi-IIb) in the duodenum was affected (P < 0.03) and decreased linearly (P < 0.002) as dietary NPP levels increased. Dietary NPP requirements estimated based on fitted broken-line models (P < 0.0001) of the sensitive indices including daily weight gain, tibia bone strength, tibia ash percentage, tibia BMC and BMD as well as middle toe ash percentage were 0.34∼0.39%. The results from this study indicate that tibia BMC and BMD might be new, sensitive, and noninvasive criteria to evaluate the dietary NPP requirements of broilers, and the dietary NPP requirement is 0.39% for broiler chicks fed a conventional corn-soybean meal diet from 1 to 21 d of age.
The objective of the present study was to investigate the effects of dietary supplemental Zinc (Zn) source and level on antioxidant ability and fat metabolism-related enzymes of broilers. Dietary treatments included the Zn-unsupplemented corn-soybean meal basal diet (control) and basal diets supplemented with 60, 120, or 180 mg Zn/kg as Zn sulfate, Zn amino acid chelate with a weak chelation strength of 6.5 quotient of formation (Qf) (11.93% Zn) (Zn-AA W), Zn proteinate with a moderate chelation strength of 30.7 Qf (13.27% Zn) (Zn-Pro M), or Zn proteinate with an extremely strong chelation strength of 944.0 Qf (18.61% Zn) (Zn-Pro S). The results showed that dietary supplemental Zn increased (P < 0.01) Zn contents in the liver, breast, and thigh muscles of broilers, and up-regulated mRNA expressions of copper and Zn containing superoxide dismutase (CuZnSOD) and metallothioneins (MT) in the liver (P < 0.01) and thigh muscle (P < 0.05), and also enhanced (P < 0.05) CuZnSOD activities in the breast and thigh muscles, which exerted antioxidant ability and a decreased malondialdehyde (MDA) level in the liver (P < 0.01) and breast and thigh muscles (P < 0.05) of broilers. Furthermore, supplemental Zn increased activities of malate dehydrogenase (MDH) and lipoprotein lipase (LPL) in the abdominal fat (P < 0.05), and fatty acid synthetase (FAS) and LPL in the liver (P < 0.01), which were accompanied with up-regulation (P < 0.01) of the mRNA expressions levels of these enzymes in the abdominal fat and liver of broilers. Dietary Zn source, and an interaction between Zn source and level, had no effects on any measurements. It is concluded that dietary Zn supplementation improved Zn status and resulted in promoting antioxidant ability and activities and gene expressions of fat metabolism-related enzymes of broilers regardless of Zn source and level, and the addition of 60 mg Zn/kg to the corn-soybean meal basal diet (a total dietary Zn of approximately 90 mg/kg) was appropriate for improving the above aspects of broilers.
To investigate whether supplementing manganese (Mn) to the maternal diet could reduce the deleterious effect of heat stress on the developing embryo, the hatchability, antioxidant status, and expression of heat shock proteins (HSP) were evaluated in chick embryos under normal and high incubation temperatures. A completely randomized design ( = 6) with 2 maternal dietary Mn treatments (unsupplemented control basal diet versus the basal diet + 120 mg Mn/kg as inorganic Mn) × 2 incubation temperatures (normal, 37.8°C, versus high, 39.0°C) was used. High incubation temperature did not affect ( > 0.19) hatchability and embryo mortality and development but did increase ( < 0.05) activities of heart manganese superoxide dismutase (MnSOD) and liver copper zinc superoxide dismutase and liver MnSOD mRNA and protein levels in embryos. High incubation temperature also decreased ( < 0.003) HSP70 protein level in the heart but had no effects ( > 0.07) in the liver of embryos. Maternal diet with Mn supplementation not only increased ( < 0.05) the hatchability and Mn content ( < 0.001) in the yolk and embryonic tissues and the activity of MnSOD in the heart ( < 0.004) as well as relative liver weight ( < 0.05) under normal incubation temperature but also decreased ( ≤ 0.05) embryo mortality and HSP90 mRNA level in the liver and heart of embryos. Furthermore, under high incubation temperature, maternal diet Mn supplementation increased ( < 0.002) MnSOD protein expression in the liver of embryos but had no effect ( > 0.43) under normal incubation temperature. These results indicated that high incubation temperature induced self-protective responses of chick embryos with a modification of antioxidant status and a depression of HSP70 protein level. Maternal dietary supplementation of Mn could improve the hatchability as well as antioxidant ability to protect against heat challenge in embryos during incubation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.