We propose an ultra-broadband multimode interference (MMI) coupler with a wavelength range exceeding the O, E, S, C, L and U optical communication bands. For the first time, the dispersion property of the MMI section is engineered using a subwavelength grating structure to mitigate wavelength dependence of the device. We present a 2 × 2 MMI design with a bandwidth of 450nm, an almost fivefold enhancement compared to conventional designs, maintaining insertion loss, power imbalance and MMI phase deviation below 1dB, 0.6dB and 3°, respectively. The design is performed using an in-house tool based on the 2D Fourier Eigenmode Expansion Method (F-EEM) and verified with a 3D Finite Difference Time Domain (FDTD) simulator.
Abstract-We present a tool to aid the design of periodical structures, such as subwavelength grating (SWG) structures. It is based on the Fourier Eigenmode Expansion Method and includes the Floquet modes theory. Besides, the most interesting implemented functionalities to ease the design of photonic devices are detailed. The tool capabilities are shown using it to analyse and design three different SWG devices.
Grating couplers are an efficient means for fiber to chip coupling, as they require no facet preparation and enable wafer scale testing. While grating couplers are commonly used in silicon wire waveguides, their application to micrometric silicon-on-insulator rib waveguides is complicated due to the presence of high-order Bloch modes. We study the Bloch modes behavior and their excitation determined by access waveguide design. The latter is implemented to enable single Bloch mode excitation. The use of a design process based on modal analysis is proposed. A grating coupler is proposed in silicon-on-insulator with 1.5 microm thick silicon layer that achieves a coupling efficiency of 65.6% at 1.55 microm. The structure, including interconnection waveguides, access waveguide and grating can be fabricated using a single lithography step.
Grating couplers are a promising approach to implement efficient fiber-chip coupling. However, their strong polarization dependence makes dual-polarization operation challenging. In this Letter we propose, for the first time, a polarization-independent grating coupler for thick rib silicon-on-insulator (SOI) waveguides. Coupling efficiency is optimized by designing the grating pitch and duty cycle, without varying the bottom oxide thickness, which significantly simplifies practical implementation. Directivity of the grating coupler is enhanced by a high reflectivity layer under the bottom oxide after the selective removal of the Si substrate. Dual-polarization coupling efficiency of -2.8 dB is shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.